百度试题 结果1 题目k-means聚类算法的优点()A、算法快速、简单B、对大数据集有较高的效率并且是可伸缩性的C、时间复杂度近于线性,而且适合挖掘大规模数据集D、聚类中心能迅速确定 相关知识点: 试题来源: 解析 A;B;C 反馈 收藏
K-Means聚类算法的优点有( )A.算法中聚类个数K是事先给定的,K的选定是非常难以估计的B.算法和结果都简单易懂C.对大数据集有较高的效率并且是可伸缩性的D.用K-
百度试题 题目K-means聚类算法的优点是() A.快速简单B.K要事先给定C.K值的选定容易估计D.不用采用距离作为评价指标相关知识点: 试题来源: 解析 A 反馈 收藏
综上所述,k-means聚类算法具有算法思想简单、收敛速度快、聚类效果较优和参数调整相对简单等优点。然而,它也存在K值难以确定、对初始聚类中心敏感、对形状复杂的簇效果不佳以及易受噪声和异常值影响等缺点。在实际应用中,需要根据具体的数据集和应用场景来评估k-means算法的适用性和优劣。
尽管k-means聚类算法有许多优点,但也存在一些缺点。首先,k-means对初始聚类中心点的选择较为敏感,不同的初始点可能导致不同的聚类结果。其次,k-means对数据集的分布要求较高,对异常值和噪声敏感,容易受到极端值的影响。此外,k-means要求将每个数据点都分配到一个簇中,导致结果可能不够灵活,对于非凸形状的簇识别...
(1)k-means算法: 优点:算法描述容易,实现简单快速 不足: 簇的个数要预先给定 对初始值的依赖极大 不适合大量数据的处理 对噪声点和离群点很敏感 很难检测到“自然的”簇(2)层次聚类算法: BIRCH算法: 优点:利用聚类特征树概括了聚类的有用信息,节省内存空间;具有对象数目呈线性关系,可伸缩性和较好的聚类质量...
K-means聚类算法是数据挖掘和机器学习中使用最广泛的聚类算法之一。其核心思想是将n个观测值划分到k个集群中,使得每个观测值属于离其最近的平均值(即聚类中心)对应的集群,从而得到k个集群。然而,K-means算法并非完美无缺,它有着自身的优点和局限性。本文将对其优缺点进行深入的探讨,并介绍一些改进的方法。 K-means...
k-means算法的优点主要有:A.算法简单、经典B.当聚类的每个簇是密集的,且簇与簇之间区别特别明显时,其聚类效果较好C.处理大数据集时是高效的,并且具有较好的可伸缩性
k-means聚类算法的优点有: 1)算法思想简单,收敛速度快; 2)聚类效果较优; 3)主要需要调参的参数仅仅是簇数K; 4)算法的可解释度比较强。 k-means聚类算法的缺点有: 1)采用迭代方法,聚类结果往往收敛于局部最优而得不到全局最优解; 2)对非凸形状的类簇识别效果差; 3)易受噪声、边缘点、孤立点影响; 4)...
K-means 是我们最常用的基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 1. 算法 1.1. 算法步骤 1.2. 复杂度 2. 优缺点 优点: 容易理解,聚类效果不错,虽然是局部最优, 但往往局部最优就够了; 处理大数据集的时候,该算法可以保证较好的伸缩性; ...