主要缺点 K值选择困难:K值(即簇的数量)需要事先指定,而选择合适的K值往往是一个难题。 对初始质心敏感:K-means算法的结果可能受到初始质心选择的影响,不同的初始质心可能导致不同的聚类结果。 只能发现球形簇:K-means算法假设簇是球形的,对于非球形簇的数据集,其聚类效果可能不佳。 对异常值敏感:K-means算法对异...
尽管k-means聚类算法有许多优点,但也存在一些缺点。首先,k-means对初始聚类中心点的选择较为敏感,不同的初始点可能导致不同的聚类结果。其次,k-means对数据集的分布要求较高,对异常值和噪声敏感,容易受到极端值的影响。此外,k-means要求将每个数据点都分配到一个簇中,导致结果可能不够灵活,对于非凸形状的簇识别...
聚类效果较优。 算法的可解释度强。 主要需要调参的参数仅仅是簇数k。 缺点: K值的选取不好把握。 对于不是凸的数据集比较难收敛。 如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。 采用迭代方法,得到的结果只是局部最优。 对噪音和异常点比较敏感。0 0...
缺点: 初始值敏感性:K-means算法的聚类结果受初始质心的选择影响较大。不同的初始质心可能导致完全不同的聚类结果,因此需要一定的经验或多次运行算法来获取最佳结果。 对异常值和噪声敏感:由于K-means算法基于欧氏距离度量,对异常值和噪声数据点比较敏感。这些异常值可能会导致簇的形状和大小发生变化,影响聚类结果的准...
K-means 是我们最常用的基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 1. 算法 1.1. 算法步骤 1.2. 复杂度 2. 优缺点 优点: 容易理解,聚类效果不错,虽然是局部最优, 但往往局部最优就够了; 处理大数据集的时候,该算法可以保证较好的伸缩性; ...
对初始值敏感:K-means算法对初始聚类中心的选择非常敏感,不同的初始值可能会导致不同的聚类结果。这意味着算法的稳定性较差,容易陷入局部最优解。 对异常值和噪声敏感:由于K-means算法是基于距离进行聚类的,因此当数据集中存在异常值或噪声时,可能会导致聚类效果变差。 K-means算法的改进方法: 使用K-means++初始化...
优缺点 K-Means 原理 K-Means是一种基于划分的聚类算法,旨在将数据集划分为k个簇(k为超参数,需要事先指定),使得每个簇内的数据点尽可能接近。算法通过迭代优化以下目标函数来实现聚类:min∑1k∑x∈cidistance(x,μi),其中,ci表示第i个簇,μi表示第i个簇的质心 ...
K-means算法的优点是:首先,算法能根据较少的已知聚类样本的类别对树进行剪枝确定部分样本的分类;其次,为克服少量样本聚类的不准确性,该算法本身具有优化迭代功能,在已经求得的聚类上再次进行迭代修正剪枝确定部分样本的聚类,优化了初始监督学习样本分类不合理的地方;第三,由于只是针对部分小样本可以降低总的聚类时间复杂...
k-means聚类算法的优点有: 1)算法思想简单,收敛速度快; 2)聚类效果较优; 3)主要需要调参的参数仅仅是簇数K; 4)算法的可解释度比较强。 k-means聚类算法的缺点有: 1)采用迭代方法,聚类结果往往收敛于局部最优而得不到全局最优解; 2)对非凸形状的类簇识别效果差; 3)易受噪声、边缘点、孤立点影响; 4)...
K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 2、api 3、性能评估 越接近1越好,一般不超过0.7 4、优缺点 优点 1)原理比较简单,实现也是很容易,收敛速度快。