kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。 其优化算法步骤为: 1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭...
K-Means详解 1. K-Means的工作原理 作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢?在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去...
k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的,先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。算法思想 我们先过一下几个基本概念:(1) K值:即要将数据分为几个簇;(2) 质心:可理解为均值,即向量各个维度取...
基于相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。 图1 二维空间聚类的例子 [1] 上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立地提出,直到1967年,...
作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢? 概念1:簇与质心 K-Means算法是将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。簇中所有数据的均值通常被称为这个簇...
K-means方法是一种非监督学习的算法,它解决的是聚类问题 二、算法简介 K-means方法是聚类中的经典算法,数据挖掘十大经典算法之一;算法接受参数k,然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足聚类中的对象相似度较高,而不同聚类中的对象相似度较小。
K-Means是个简单实用的聚类算法,这里对K-Means的优缺点做一个总结。 优点 1)原理比较简单,实现也是很容易,收敛速度快。 2)聚类效果较优。 3)算法的可解释度比较强。 4)主要需要调参的参数仅仅是簇数k。 缺点 1)K值的选取不好把握 2)对于不是凸的数据集比较难收敛 ...
聚类分析之K-means算法 一.距离度量和相似度度量方法 1.距离度量 2.相似度 二.K-means算法原理 1.选取度量方法 2.定义损失函数 3.初始化质心 4.按照样本到质心的距离进行聚类 5.更新质心 6.继续迭代 or 收敛后停止 聚类分析是一类非常经典的无监督学习算法。聚类分析就是根据样本内部样本“子集”的之间的特征...
kmeans聚类详解 ** (1) kmeans简介 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步...