4. 进行聚类分析 from sklearn.cluster import KMeans k = 3 # 使用KMeans进行聚类 kmeans = KMeans(n_clusters=k, n_init=10).fit(dataset) # 指定要分的簇数 labels = kmeans.labels_ labels centers = kmeans.cluster_centers_ centers draw_cluster(dataset, centers, labels, k) 二、K值的选择 ...
1、K均值(K-Means)是聚类算法中最为简单、高效的,属于无监督学习算法。 聚类算法有K均值聚类(K-Means)、基于密度的聚类(DBSCAN)、最大期望聚类(EM)、层次聚类等多种类型。其中层次聚类写过相关博客,参考Cheer:凝聚层次聚类及python/sklearn/scipy实现 2、核心思想:由用户指定K个初始质心(initial centroids),以作...
kmeans聚类算法代码kmeans聚类算法代码 K-means是一种经典的聚类算法,通过将数据划分为k个簇来实现聚类。下面是一个Python实现的K-means算法代码示例: ```python import numpy as np def kmeans(X, k, max_iters=100): #随机选择k个中心点 centers = X[np.random.choice(range(len(X)), k, replace=...
下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 4、算法实现步骤 k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: 1) 随机选取 k个聚类质心点 2) 重复下面过程直到收敛 { 对于每一个样例 i,计算其应该属于的类: 对于每一个类 j,重新计算...
我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应该被分类到的是哪一个类别当中,当然在我们实际的数据当中不会告诉我们哪个数据分在了哪一个类别当中,只会有X当中数据。在这里写代码的时候...
kmeans 聚类算法 python 代码 K-means 聚类算法是一种常用的聚类分析方法,可以将数据集分成 K 个不 同的簇,使得簇内的数据点尽可能相似,簇间的数据点尽可能不同。以下是一个 使用Python 和 scikit-learn 库实现 K-means 聚类算法的示例代码: from sklearn.cluster import KMeans import numpy as np import ...
以下是我的代码,包含注释、空行总共26行,有效代码16行。1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每...
K-means聚类算法也称k均值聚类算法,时集简单和经典于一身的基于距离的聚类算法。它采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类族是由距离靠近的对象组成的,取中心点作为质心,把靠近质心的归为一类。 K-means核心思想 ...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
KMeans:K-Means聚类算法。 silhouette_score:评估聚类效果的轮廓系数。 matplotlib.pyplot:用于绘制数据和聚类结果的图形。 2. 生成示例数据 X,_=make_blobs(n_samples=300,centers=4,n_features=2,cluster_std=0.60,random_state=0) n_samples=300:生成300个数据点。