K均值(K-Means)算法,是一种无监督学习(Unsupervisedlearning)算法,其核心是聚类(Clustering),即把一组输入,通过K均值算法进行分类,输出分类结果。 由于K均值算法是无监督学习算法,故这里输入的样本和之前不同了,输入的样本只有样本本身,没有对应的样本分类结果,即这里的输入的仅仅是{x(1),x(2),…x(m)},每个x...
1.简单易懂:K-means算法原理简单,容易理解和实现,对于初学者来说,它是入门聚类分析的一个很好的选择。 2.计算效率高:K-means的时间复杂度大致是线性的(O(n)),这使得它在处理大数据集时比较有效率。 3.广泛应用:K-means可以用于各种数据聚类问题,并且在市场细分、社交网络分析、图像压缩等领域有广泛应用。 4....
# 多次运行 k-means 算法并选择最优结果best_inertia = np.infbest_labels = Nonebest_centroids = Nonefor _ in range(10): kmeans = KMeans(n_clusters=3, random_state=42) labels = kmeans.fit_predict(data) if kmeans.inertia_ < best_inertia: best_inertia = kmeans.inertia_ ...
执行K-means聚类def kmeans(X, k, max_iters=100):# 初始化中心点centroids = initialize_centroids(X, k)for i in range(max_iters):# 将每个点分配给最近的中心点labels = assign_clusters(X, centroids)# 计算新的中心点new_centroids = update_centro...
1 K-Means算法引入基于 相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。上个世…
在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。具体过程可以总结如下:a.首先随机选取样本中的K个点作为聚类中心;b.分别算出样本中其他样本距离这K个聚类中心的距离,并把...
Kmeans算法的核心在于如何计算距离和重新计算聚簇中心,具体方式如下: 1.距离计算方式: 在Kmeans算法中,通常使用欧氏距离作为测度标准,即将两个数据点的n个特征之间的差值按平方和的方式相加,再将结果取平方根。例如,对于一个数据点(P)和聚类中心(C),其距离计算公式为: $D(P,C)=\sqrt{\sum_{i=1}^{n}(p...
kmeans 算法是基于距离相似度计算的,以确定各样本所属的最近中心点,常用距离度量有曼哈顿距离和欧式距离,具体可以见文章【全面归纳距离和相似度方法(7种)】 曼哈顿距离 公式: 欧几里得距离 公式: 曼哈顿、欧几里得距离的计算方法很简单,就是计算两样本(x,y)的各个特征i间的总距离。如下图(二维特征的情况)蓝线的距...
首先,K-means聚类算法的核心是计算数据点与各质心之间的距离。在算法迭代过程中,每个数据点会被分配到距离其最近的质心所代表的簇中。距离计算通常采用欧氏距离公式,对于二维平面上的两个点(x1, y1)和(x2, y2),它们之间的欧氏距离d可以表示为:d = √[(x1 - x2)² + (y1 - ...
K-means 是我们最常用的基于距离的聚类算法,其认为两个目标的距离越近,相似度越大。 算法 1.1 牧师-村民模型 K-means 有一个著名的解释:牧师—村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课。