K-means聚类算法是一种无监督的学习方法,通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇,使得同一簇内数据相似度高而不同簇之间数据相似度低。 算法流程 K-means的算法过程如下: 优点 K-means优点: ①是解决聚类问题的一种经典算法,简单、快速。 ②对处理大数据集,该算法...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
常用分析软件中的功能模块或函数包,基本上都已经代替使用者们自动预设了随机初始点,只需填入目标K值,就可以跑动算法。但实际上,K-Means对初始聚类中心的位置十分敏感,每次迭代,初始点的不同往往会导致不同的聚类结果。此外过于临近的初始中心点,有时还会导致模型的收敛时间变长(即Step4中迭代时间变长)。一种简单粗...
犯罪地点识别:在安全领域,K-Means算法可以用于识别犯罪地点。通过对城市中特定地区的相关犯罪数据进行聚类分析,可以分析犯罪类别、犯罪地点以及两者之间的关联,从而识别出城市中容易犯罪的地区。客户分类:在市场营销领域,K-Means算法常用于客户分类。通过对客户的购买历史、兴趣或活动监控等数据进行聚类分析,可以将客户...
Mini Batch K-Means可以避免样本量太大带来的计算问题,算法收敛速度也能够加快,当然带来的代价就是我们的聚类精确度降低。为增加算法的准确性,我们可以多训练几次Mini Batch K-Means算法,用不同的随机采样集来得到聚类簇,选择其中最优的聚类簇。 6.Sklearn实现K-Means算法 ...
什么是 k-means 算法 k-means 算法是一种用于聚类分析的非监督学习算法。它通过将数据点划分为 k 个簇,使得每个簇中的数据点尽可能相似,而不同簇之间的数据点尽可能不同。这个算法的名称来源于其中的 k 个簇(clusters)和每个簇的均值(mean)。k-means 算法的工作原理 k-means 算法的工作原理可以概括为...
K-means是聚类算法中最典型的一个,也是最简单、最常用的一个算法之一。这个算法主要的作用是将相似的样本自动归到一个类别中。通过设定合理的K KK值,能够决定不一样的聚类效果。 K-means算法原理与理解 01 基本原理 假定给定数据样本X ,包含了n 个对象 ...
大家可以发现, Inertia是基于欧几里得距离的计算公式得来的。实际上,也可以使用其他距离,每个距离都有自己对应的Inertia。在过去的经验中,已经总结出不同距离所对应的质心选择方法和Inertia,在K-Means中,只要使用了正确的质心和距离组合,无论使用什么距离,都可以达到不错的聚类效果。3. K-Means算法的时间复杂度 ...
K-means 是我们最常用的基于距离的聚类算法,其认为两个目标的距离越近,相似度越大。 算法 1.1 牧师-村民模型 K-means 有一个著名的解释:牧师—村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课。
什么是Kmeans聚类 Kmeans聚类算法为一般的无监督的数据挖掘算法,它是在没有给定结果值的情况下,对于这类数据进行建模。聚类算法的目的就是根据已知的数据,将相似度较高的样本集中到各自的簇中。 Kmeans聚类思想 Kmeans就是不断的计算各样本点与簇中心之间的距离,直到收敛为止,大致分为以下4个步骤: ...