百度试题 结果1 题目在数据挖掘中,K-means算法属于哪一类算法? A. 分类算法 B. 聚类算法 C. 关联规则算法 D. 回归算法 相关知识点: 试题来源: 解析 B 反馈 收藏
百度试题 题目K-means算法属于什么类型的聚类算法 A.基于密度的聚类算法B.划分型聚类算法C.层次聚类算法D.网格聚类算法相关知识点: 试题来源: 解析 B 反馈 收藏
百度试题 题目K-means聚类算法属于___算法。 A.基于划分的聚类B.基于密度的聚类C.基于分层的聚类D.基于模型的聚类相关知识点: 试题来源: 解析 A 反馈 收藏
百度试题 题目K-means算法属于 A.监督学习方法B.非监督学习方法相关知识点: 试题来源: 解析 B 反馈 收藏
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: ...
K-Means 是一个无监督学习算法,它的目标是将 n 个观测值划分到 k 个簇中,使得每个观测值属于离它最近的簇中心(质心),从而使簇内的方差最小。 2. K-Means聚类算法概述 2.1 监督学习与无监督学习的对比 监督学习需要预先标记的输出结果来训练模型,常用于分类和回归任务。无监督学习不依赖于标注输出,而是通过分...
1. K-Means的工作原理 作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢?在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。具体过程可以...
K-means是聚类算法中最典型的一个,也是最简单、最常用的一个算法之一。这个算法主要的作用是将相似的样本自动归到一个类别中。通过设定合理的K KK值,能够决定不一样的聚类效果。 K-means算法原理与理解 01 基本原理 假定给定数据样本X ,包含了n 个对象 ...
k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的,先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。算法思想 我们先过一下几个基本概念:(1) K值:即要将数据分为几个簇;(2) 质心:可理解为均值,即向量各个维度取...