from sklearn.clusterimportKMeans from sklearn.datasetsimportmake_blobsif__name__=="__main__":# 数据 x,y=make_blobs(n_samples=500,n_features=2,centers=3,random_state=20220929)# 创建KMeans对象 km=KMeans(n_clusters=3,
步骤:分析→ 聚类分析 → K-Means → 选入数据 → 更多 → 模型设置 → 聚类簇数设置为4 → 超参数调优与绘图 → 绘制聚类图 → 确定 最终DMSAS的建模结果如下所示 Python 以下展示使用sklearn,并直接采用sklearn库自带的鸢尾花数据集对K-Means进行实现的案例,这里用到的类是sklearn.cluster.KMeans。 1....
K-Means算法是一个计算成本很大的算法。K-Means算法的平均复杂度是O(k*n*T),其中k是超参数,即所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数。在最坏的情况下,KMeans的复杂度可以写作O(n(k+2)/p),其中n是整个数据集中的样本量,p是特征总数。4. 聚类算法的模型评估指标 不同于...
5、当每次迭代结果不变时,认为算法收敛,聚类完成,K-Means一定会停下,不可能陷如一直选质心的过程。 四、模型评估 4.1 误差平方和(SSE \The sum of squares due to error): 举例:(下图中数据-0.2, 0.4, -0.8, 1.3, -0.7, 均为真实值和预测值的差) 在k-means中的应用: 公式各部分内容: 上图中: k=...
append(cluster_idx) # 将预测的簇索引添加到结果列表中return predictions# 模型实例化与训练:创建KMeansManual对象并调用fit方法进行训练kmeans_manual = KMeansManual(k=4)kmeans_manual.fit(X)y_pred = kmeans_manual.predict(X) # 使用训练好的模型对数据集进行预测# 结果可视化:绘制散点图展示聚类...
kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。 其优化算法步骤为: 1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭...
1 k-means算法原理 k-means算法原理用下图 9 表示: 图9. k-means 算法示意图 从上图中,我们可以看到,A,B,C,D,E 是五个在图中点。而灰色的点是我们的种子点, 也就是我们用来找点群的点。有两个种子点,所以 K=2。然后,K-Means 的算法如下: ...
k-means 算法是一种用于聚类分析的非监督学习算法。它通过将数据点划分为 k 个簇,使得每个簇中的数据点尽可能相似,而不同簇之间的数据点尽可能不同。这个算法的名称来源于其中的 k 个簇(clusters)和每个簇的均值(mean)。k-means 算法的工作原理 k-means 算法的工作原理可以概括为以下几个步骤:初始化中心...