K均值(K-Means)算法是无监督的聚类方法,实现起来比较简单,聚类效果也比较好,因此应用很广泛。K-Means算法针对不同应用场景,有不同方面的改进。我们从最传统的K-Means算法讲起,然后在此基础上介绍初始化质心优化K-Means++算法,距离计算优化Elkan K-Means算法和大样本情况下Mini Batch K-Means算法。 K-Means算法的...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化: 结合最...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
2. k-means(k均值)算法 2.1 算法过程 K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。 K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为: 首先选择?个随机的点,称为聚类中心(cluster centroids); ...
K-Means的目标是确保“簇内差异小,簇外差异大”,所以可以通过衡量簇内差异来衡量聚类的效果。前面讲过,Inertia是用距离来衡量簇内差异的指标,因此,是否可以使用Inertia来作为聚类的衡量指标呢?「肘部法(手肘法)认为图3的拐点就是k的最佳值」手肘法核心思想:随着聚类数k的增大,样本划分会更加精细,每个簇的...
一K-均值聚类(K-means)概述 1. 聚类 “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。 2. 无监督学习和监督学习 ...
聚类(cluster)算法在机器学习中有若干种,本文讲的是K-means聚类算法,也叫K均值聚类算法。K是指将数据信息观察的对象聚成几类,means是指平均距离(在2.5.3中具体介绍)。 二、算法原理 为了易于理解,本文采用二维特征空间作为演示 1、何为特征 指观察某些事物或现象,能够被区分、记录和保存的信息(数据),例如:人的...
数据挖掘1:K-means均值聚类算法 一.K-means均值聚类算法原理 对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,…Ck),则我们的目标是最小化平方误差E: ...