K-means聚类效果的好坏直接取决于聚类依据的选择,一般是以专业经验角度,从能反映研究对象的不同方面选择...
Elkan K-Means算法提出利用两边之和大于第三边、两边之差小于第三边的三角形特性来减少距离的计算。 Elkan K-Means迭代速度比传统K-Means算法迭代速度有较大提高,但如果我们的样本特征是稀疏的,或者有缺失值的话,此种方法便不再使用。 5.大样本优化Mini Batch K-Means算法 传统的K-Means算法中需要计算所有样本点...
对于每一个K值,首先运行K-means算法,得到一个群内平方和。 然后,生成一组随机数据,并用相同的K值运行K-means算法。 比较真实数据的群内平方和和随机数据的结果,并计算他们之间的差距(称之为间隔值)。 对于多个K值,重复以上步骤,并选择拥有最大间隔值的K。 四、交叉验证 交叉验证在聚类中比较少见,但可以用一种...
而最近簇的定义是 其中p是某个簇Ck中的样本。事实上,简单点讲,就是用Xi到某个簇所有样本平均距离作为衡量该点到该簇的距离后,选择离Xi最近的一个簇作为最近簇。 求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。平均轮廓系数的取值范围为[-1,1],且簇内样本的距离越近,簇间样本距离越远,平均轮廓...
确定K 值是K-means聚类分析的一个重要步骤。不同的 K 值可能会产生不同的聚类结果,因此选择合适的 K 值非常重要。 以下是一些常见的方法来选择 K 值: 手肘法:该方法基于绘制聚类内误差平方和(SSE)与 K 值之间的关系图。随着 K 值的增加,SSE会逐渐降低,但降低幅度逐渐减小。手肘法的目标就是找到 SSE 下降...
K-means聚类算法中的K值通过肘部法则确定。肘部法所使用的聚类评价指标为:数据集中所有样本点到其簇中心...
由KMeans算法原来可知,KMeans在聚类之前首先需要初始化 个簇中心,因此 KMeans算法对初值敏感,对于不同的初始值,可能会导致不同的聚类结果。因初始化是个"随机"过程,很有可能 个簇中心都在同一个簇中,这种情况 KMeans 聚类算法很大程度上都不会收敛到全局最小。
在K-Means中有一个重要的环节,就是放置初始质心。如果有足够的时间,K-means一定会收敛,但Inertia可能收敛到局部最小值。是否能够收敛到真正的最小值很大程度上取决于质心的初始化。初始质心放置的位置不同,聚类的结果很可能也会不一样,一个好的质心选择可以让K-Means避免更多的计算,让算法收敛稳定且更快。在...
聚类指的是把集合,分组成多个类,每个类中的对象都是彼此相似的。K-means是聚类中最常用的方法之一,它是基于点与点距离的相似度来计算最佳类别归属。 在使用该方法前,要注意(1)对数据异常值的处理;(2)对数据标准化处理(x-min(x))/(max(x)-min(x));(3)每一个类别的数量要大体均等;(4)不同类别间的...
簇内离差平方和拐点法的思想很简单,就是在不同的k值下计算簇内离差平方和,然后通过可视化的方法找到"拐点"所对应的k值,J为Kmeans算法的目标函数,随着簇数量的增加,簇中的样本量会越来越少,进而导致目标函数J的值也会越来越小,通过可视化方法,重点关注的是斜率的变化,当斜率由大突然变小时,并且之后的斜率变化缓慢...