广泛应用: K-means在许多领域得到广泛应用,包括数据挖掘、图像分割、无监督学习等,是一种通用且灵活的聚类算法。 缺点: 对初始聚类中心敏感: K-means对初始聚类中心的选择敏感,不同的初始点可能导致不同的聚类结果,因此需要采用一些启发式方法或多次运行以选择最优结果。 假设簇为凸形: K-means假设簇为凸形,对于...
K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流程如下: 1)在数据...
直到1967年,教授James MacQueen在他的论文《用于多变量观测分类和分析的一些方法(Some Methods for classification and Analysis of Multivariate Observations)》中首次提出“K-Means”这一术语,至此该算法真正开始被推广和应用,并发展出大量不同的改进算法。
K-means算法进行到这里,我们似乎已经得出了聚类的质心,但是不要忘记了我们的算法采取的是随机初始化k个簇的质心的方法,这样的话聚类效果可能会陷入局部最优解的情况,这样虽然有效果,但不如全局最优解的效果好。因此接下来的二分K--means算法就是针对这一问题所采取的相应的后处理,使算法跳出局部最优解,达到全局...
首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分的聚类算法; 接着,介绍K-means原理、K-means算法、K-means特征工程(类别特征、大数值特征)、K-means评估(SSE、轮廓系数),重点阐述了如何确定K值,如何选取初始中心点,如何处理空簇; 然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类...
K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 2、核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时...
「机器学习项目实战」Python实现聚类(Kmeans)分析客户分组 说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需项目,可关注留言。想了解更多精彩内容,快来关注张陈亚 1.问题定义 在日常银行、电商等公司中,随着时间的推移,都会积累一些客户的数据。在当前的大数据时代、人工智能时代,数据就是无...
一、scikit-learn中的Kmeans介绍 scikit-learn 是一个基于Python的Machine Learning模块,里面给出了很多Machine Learning相关的算法实现,其中就包括K-Means算法。 官网scikit-learn案例地址:http://scikit-learn.org/stable/modules/clustering.html#k-means 部分来自:scikit-learn 源码解读之Kmeans——简单算法复杂的说...
基于KMeans聚类的图像区域分割,可以通过以下步骤实现:1. KMeans聚类原理 核心思想:KMeans聚类算法旨在将数据点划分为K个类别,寻找每个类别的中心并最小化其度量。 优点:算法简单易懂,运算速度快。 限制:只能用于连续型数据,且需要在聚类前指定类簇数K。2. KMeans聚类分割灰度图像 步骤: 将...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...