4.K-Means的不足 K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流...
df = pd.DataFrame(data)# 定义K-means模型,其中k=2kmeans = KMeans(n_clusters=2, random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df[...
K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
因此接下来的二分K--means算法就是针对这一问题所采取的相应的后处理,使算法跳出局部最优解,达到全局最优解,获得最好的聚类效果。二分K-means算法首先将所有点作为一个簇,然后将簇一分为二,之后选择其中一个簇继续进行划分,选择哪一个簇取决于对其划分是否能够最大程度地降低SSE(误差平方和,即clusterAssment...
1 Kmeans模型理论 1.1 K-均值算法(K-means)算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用一个没有标签的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不...
聚类属于非监督学习,K均值聚类是最基础常用的聚类算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方和: 二、具体步骤 KMeans的核心目标是将给定的数据集划分成K个簇(K是超参),并给出每个样本数据对应的...
一、基于原生Python实现KMeans(K-means Clustering Algorithm) KMeans 算法是一种无监督学习算法,用于将一组数据点划分为多个簇(cluster)。这些簇由数据点的相似性决定,即簇内的数据点相似度高,而不同簇之间的相似度较低。KMeans 算法的目标是最小化簇内的方差,从而使得同一簇内的数据点更加紧密。 KMeans算法的...
进行k-means聚类 from sklearn.cluster import KMeanskmeans = KMeans(n_clusters=3) # n_clusters=3 表示聚成3类result = kmeans.fit(df)result 与随机森林,决策树等算法一样,KMeans函数中的参数众多,这里不具体解释了,可查阅官方文档 .join()表示横向拼接 # 对分类结果进行解读model_data_l = df....
index = int(np.random.uniform(0,m)) #18 centroids[i,:] = dataSet[index,:]19return centroids2021# k均值聚类22defkmeans_open(dataSet,k):2324 m = np.shape(dataSet)[0] #行的数目25# 第一列存样本属于哪一簇26# 第二列存样本的到簇的中心点的误差27 clusterAssment = np.mat(np...
sklearn官网所提供的参数说明有9个,我们使用时,如无特别需要,一般只有第一个参数(n_cluster)需要设置,其他参数直接采用默认值即可。 一种示例: classsklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,verbose=0,random_state=None,copy_x=True,algorithm='auto') ...