其中基本原理简述(主要是因为:1,K-means比较简单;2,网上有很多讲K-means基本原理的),重点放在代码实现上。 1, K-means基本原理 K均值(K-means)聚类算法是无监督聚类(聚类(clustering)是将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇(cluster)”)算法中的一种,也是最常用的聚类算法。
由于不知道该怎么将读取的数据存储到结构体中,所以就定义了一个二维数组,用于存储,所以就导致只能处理具有两个属性的数据。 K-Means算法是一种基于划分的聚类算法,使用一定的划分准则,把样本集合划分为k个分区,每个分区代表一簇, 且在同一簇中,样本是相似的,不同簇的样本是相异的。 优化的目标是,使得类内个样本...
C语言实现Kmeans聚类算法(2)—随机样本可视化zidea2015 立即播放 打开App,流畅又高清100+个相关视频 更多718 2 32:54 App scratch停车挑战编程讲解视频 1307 51 14:55:36 App 完全自学!全网公认最好的机器学习算法教程,同济大佬带你全面解析线性回归、逻辑回归、决策树、支持向量机...10个经典算法! 809 -- ...
k-means算法C语言实现 #defineSUCCESS1 #defineFAILURE0 #defineTRUE1 #defineFALSE0 #defineMAXVECTDIM20 #defineMAXPATTERN20 #defineMAXCLUSTER10 char*f2a(doublex,intwidth) {//transformdoubledataintostring charcbuf[255]; char*cp; inti,k; intd,s; cp=fcvt(x,width,&d,&s);//把一个浮点数...
一维k-means聚两类(c语言实现) 准确的来讲我这段程序算不得真正的k-means算法,这是我在数学建模过程中中针对一维数据聚合为两类的情况下,针对改进的版本!要想学习真正的k-means聚类请不要误入歧途! #include <iostream>//一维k-means聚两类 #include<stdio.h>...
我主要偏底层开发,最熟悉语言是C,所以代码是用C语言来实现的。在二维平面上有一些点,大意如下图, 用K-means算法对其分类,其中类的个数(即K值)和点的个数人为指定。具体的代码如下: #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> ...
最近在苦于思考kmeans算法的MPI并行化,花了两天的时间先把串行版本实现了。 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。
C语言中K-means算法实现代码 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 算法过程如下: 1)从N个样本随机选取K个样本作为质心...
{//main procedure System kmeans; if (argc<2) { printf("USAGE: KMEANS PATTERN_FILE\n"); exit(0); } if (kmeans.LoadPatterns(argv[1])==FAILURE ){ printf("UNABLE TO READ PATTERN_FILE:%s\n",argv[1]); exit(0); } kmeans.InitClusters(); kmeans.RunKMeans(); kmeans.ShowClusters...
1、#include<stdio.h>#include<math.h>#include#include<stdlib.h>#defineTRUE1#defineFALSE0intN;/数据个数intK;/集合个数int*CenterIndex;/初始化质心数组的索引double*Center;/质心集合double*CenterCopy;/质心集合副本double*AllData;/数据集合double*Cluster;/簇的集合int*Top;/集合中元素的个数,也会用作...