K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
KMeans全称K均值聚类算法,通过迭代求解,是最简单的聚类算法之一 算法分类 无监督的聚类算法 二、原理 划分(Partitioning)型的聚类方法,先创建K个划分,后通过迭代的方式将一个样本划分到另一个划分来改善最终聚类的质量 三、具体算法 随机选取K个样本作为每个簇的初始中心 剩余的样本分别归类到离其最近的簇内 计算每...
K均值(K-Means)聚类算法原理简单,可解释强,实现方便,可广泛应用在数据挖掘、聚类分析、数据聚类、模式识别、金融风控、数据科学、智能营销和数据运营等多个领域,有着广泛的应用前景。
在数据挖掘中,聚类是一个很重要的概念。传统的聚类分析计算方法主要有如下几种:划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法等。其中K-Means算法是划分方法中的一个经典的算法。 一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得...
1.k-means聚类 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类是建立在无类标记的数据上,是一种非监督的学习算法 k均值聚类算法(k-means clustering algorithm)是最著名的划分聚类算法,是一种迭代求解的聚类分析算法。由于简洁和效率使得他成为所有聚类算法...
1,原型聚类:K-means 2,模型聚类:高斯混合聚类(GMM) 3,其他聚类形式 三、code:K-means 一、聚类概述: 在无监督学习中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据内在的性质及规律,其中,应用最广的是聚类算法。 聚类的一个重要应用是用户的分组与归类。
K-Means算法在欺诈检测中也扮演着一个至关重要的角色,被广泛应用于汽车、医疗保险和保险欺诈检测领域。利用以往欺诈性索赔的历史数据,根据它和欺诈性模式聚类的相似性来识别新的欺诈。 警报的自动化聚类 大型企业IT基础架构技术组件(如网络、存储或数据库)会生成大量的警报消息,由于警报消息可以指向具体的操作,因此必须...
K-Means是GMM的特例(硬聚类,基于原型的聚类)。假设多元高斯分布的协方差为0,方差相同。 K-Means算法思想 对于给定的样本集,按照样本间的距离,将样本集划分为K个簇。 簇内的点尽量紧密连接,而簇间的距离尽量的大。 本质上是个组合优化问题, 类似于将N个球分配到K个箱子。