一、实验目的 了解聚类算法和K-Means的基本概念 了解如何使用MindSpore进行K-Means聚类实验 二、实验内容与实验步骤 环境搭建 数据预处理 模型建立与训练 模型评估 这是一个完整的实验步骤,我们首先根据手册实现基础实验——鸢尾花聚类实验,接着改动实验中K的数值以及质心的选值来测试创新设计。 三、实验环境...
k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。 2 K-means算法原理 k-...
6 实验一:人工设置K值为3 6.1 对文本进行kmeans聚类 6.2 输出每个簇群去重后的关键词 6.3 可视化 7 实验二:使用“手肘法”确定最佳的K值 7.1 执行“手肘法” 7.2 对文本进行kmeans聚类 7.3 输出每个簇群去重后的关键词 7.4 可视化 8 总结 【注意】本文的目的是演示怎样用Python编程实现kmeans聚类。如果想直接...
1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。 2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。 二、算法原理 首先...
本实验的目的是通过K-means算法来实现机器视觉的相关任务,如图像分割、图像压缩、目标追踪等,并了解K-means算法在机器视觉中的应用和效果。 K-means算法是一种聚类算法,其基本思想是通过迭代的方式将数据集划分为K个簇,使得同一个簇内的数据点之间的距离最小化,而不同簇之间的距离最大化。在机器视觉中,K-means...
三、实验基本原理 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 我们以一个二维的例子来说明下聚类的目的。如下图左所示,假设我们的n个样本点分布在图中所示的...
使用K-means模型对cluster.dat进行聚类。尝试使用不同的类别个数K,并分析聚类结果。 按照8:2 的比例,随机将数据划分为训练集和测试集。至少尝试 3 个不同的 K 值,并画出不同 K 下的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。
说明K-means的优缺点 了解聚类中的算法优化方式 知道特征降维的实现过程 应用Kmeans实现聚类任务 一、聚类算法简介 1.1 认识聚类算法 使用不同的聚类准则,产生的聚类结果不同。 1.1.1 聚类算法在现实中的应用 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别 ...
实验报告6 Kmeans聚类.docx,专业班级:2018164 学号:201816406 姓名:张锦渊 实验6: Kmeans聚类 一、实验目的 了解Kmeans的构建过程和代码实现,应用Kmeans解决简单的实际问题。 二、实验准备 安装python和pycharm,了解python基础编程和pycharm使用。 三、实验内容 基于给
1、 问题描述及实验要求 K-means算法对data中数据进行聚类分析 (1)算法原理描述 (2)算法结构 (3)写出K-means具体功能函数(不能直接调用sklearn.cluster(Means)功能函数)具体函数功能中返回值包括 数据类标签,累中心,输入包括:数据,类别数 (4)可视化画图,不同类数据采用不同颜色 ...