K-means聚类也称为快速聚类法,是无监督学习中最常见的一种,它适合样本量较大的数据集,要求参与聚类的指标变量为定量数据,用于对样本进行分类处理。 K-means聚类的K指的是聚类的类别个数,可以根据行业知识、经验来自行给定,也可以遍历多个聚类方案进行优选探究,比如说在3~6类之间进行遍历,即依次选择聚为3类、4类...
计算当前聚类的平方差,循环退出条件是取得最小的平方差,也就是质心不再改变的时候。最终质心一定是确定的,不会陷入死循环。 随着循环次数逐渐收敛,不难证第1步随机的初始质心对结果无影响,即使得K-means算法具有普遍适用性。 可以看出,第六次更新后聚类相同,数据收敛。 大家可以尝试修改初始质心,查看结果是否一致。
1 K-Means算法引入 基于相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。 图1 二维空间聚类的例子 [1] 上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立...
聚类分析方法可分为Q型和R型,如下图: SPSSAU-进阶方法-聚类 SPSSAU-进阶方法-分层聚类 1、K-means聚类 (1)算法原理 K-means算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终...
为什么会使用均值作为中心点的选择呢?这主要是由于我们目标函数的设置有关。我们使用误差平方和作为聚类的目标函数,就要求我们最终选择均值为聚类中心点迭代的原则。 这样不端迭代,直到达到迭代次数或是类别不再发生变化,结束。 最终的聚类结果,如下图: 如何使用 sklearn 中的 K-Means 算法 ...
我们也可以用另一种方式来理解kmeans算法,那就是使某一个点的和另一些点的方差做到最小则实现了聚类,如下图所示: 得解! 六:代码实现 我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应...
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
python客户kmeans聚类 结果图Plt python k-means聚类 一、k-means聚类算法 k-means聚类属于比较基础的聚类算法,它的算法步骤如下 算法步骤: (1) 首先我们选择一些类/组等数据,首先确定需要分组的数量k,并随机初始化数据中的K个中心点(中心点表示每种类别的中心,质心)。
K-Means 是一种非监督学习,解决的是聚类问题。K 代表的是 K 类,Means 代表的是中心,你可以理解这个算法的本质是确定 K 类的中心点。当你找到了中心点,也就完成了聚类! 可以从以下三个角度来梳理k-means: 如何确定 K 类的中心点? 如何将其他点划分到k类中?