K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。聚类分析就是以相似性为基础,在一个聚类中的模式之间比不在同一个聚类中的模式之间具有更多的相似性。对数据集进行聚类划分,属于无...
而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习)。 k均值(k-means)算法就是一种比较简单的聚类算法。 一、k-means基本思想 K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k...
无监督学习常用于聚类。输入数据没有标记,也没有确定的结果,而是通过样本间的相似性对数据集进行聚类,使类内差距最小化,类间差距最大化。无监督学习的目标不是告诉计算机怎么做,而是让它自己去学习怎样做事情,去分析数据集本身。常用的无监督学习算法有K-means、 PCA(Principle Component Analysis)。聚类算法又...
聚类算法:K均值 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 基本K均值:选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个簇。然后,根据指派...
聚类(cluster)算法在机器学习中有若干种,本文讲的是K-means聚类算法,也叫K均值聚类算法。K是指将数据信息观察的对象聚成几类,means是指平均距离(在2.5.3中具体介绍)。 二、算法原理 为了易于理解,本文采用二维特征空间作为演示 1、何为特征 指观察某些事物或现象,能够被区分、记录和保存的信息(数据),例如:人的...
k均值(k-means)是聚类算法中最为简单、高效的,属于无监督学习算法 核心思想:由用户指定k个初始质心(initial centroids),以作为聚类的类别(cluster),重复迭代直至算法收敛 基本算法流程: 选取k个初始质心(作为初始cluster); repeat: 对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster; ...
一K-均值聚类(K-means)概述 1. 聚类 “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。 2. 无监督学习和监督学习 ...
K-Means 术语 簇: 所有数据的点集合,簇中的对象是相似的。 质心: 簇中所有点的中心(计算所有点的均值而来). SSE: Sum of Sqared Error(误差平方和), 它被用来评估模型的好坏,SSE 值越小,表示越接近它们的质心. 聚类效果越好。由于对误差取了平方,因此更加注重那些远离中心的点(一般为边界点或离群点)。
聚类之K均值(K-means)算法,这个事起源于跟朋友一次聚会,他比较忙,一刻也不能停地处理工作。我就看他一直在看Excel表格,根据数据的特征不断地做决定。我比较好奇就问什么样的数据要做什么样的处理,他说了一些指标,比如X指标、Y指标都高,就执行A方案;X指标高、Y指标