选择聚类数量:在应用 KMeans 算法之前,需要确定聚类的数量。这个数量通常由用户指定,通过参数 n_clusters 控制。 应用KMeans 算法:将 KMeans 算法应用于颜色数据集,将颜色值聚类为指定数量的簇。每个簇的质心代表了该簇的平均颜色。 像素映射:每个像素的颜色被映射到最接近的簇的质心所代表的颜色。这样,整个图像被...
k-means分析就是这么一个自动分类的过程。它会根据糖果的颜色特征,把它们分成若干个组,每个组里的糖果颜色都比较相似。 更专业一点说,k-means分析是一种常用的聚类算法,它会将数据集中的数据点分成k个不同的簇。每个簇都有一个中心点,这个中心点就是簇中所有数据点的平均值。算法的目标是使得每个数据点都属于...
K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有...
2.使用KMeans算法进行聚类接下来,我们使用KMeans算法对数据进行聚类。我们需要指定要聚类的簇数(这里设置为2),然后调用fit方法对数据进行训练。1python复制代码2# 使用KMeans算法进行聚类3 kmeans = KMeans(n_clusters=2, random_state=42)4 kmeans.fit(data)56# 获取聚类结果7 labels = kmeans....
总体而言,K-means算法从提出至今经历了多个阶段的发展,不断在算法性能、处理规模和鲁棒性方面进行改进。它在数据挖掘、图像分割、无监督学习等领域得到广泛应用,成为了一种经典而实用的聚类算法。 1.2 K-Means算法思想 基于相似性度量,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大,这就是(空间...
本文件算法将实现Python简单实现K-means聚类算法,然后进行两个案例: 对普通数据进行聚类 压缩图像 然后使用scikit-learn包实现图片压缩案例。 实验环境:win10 、Jupyter 普通数据聚类 1 加载数据并可视化 import numpy as np import pandas as pd import matplotlib.pyplot as plt ...
一、导入需要的Python包 1. K-means在sklearn.cluster中,用到K-means聚类时,我们只需: from sklearn.cluster import KMeans 1. K-means在Python的三方库中的定义是这样的: class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
KMeans是一种无监督学习的聚类算法,它的核心思想是将n个观测值划分为k个聚类,使得每个观测值属于离其最近的均值(聚类中心)对应的聚类,从而完成数据的分类。KMeans算法具有简单、高效的特点,在数据挖掘、图像处理、机器学习等领域有广泛应用。 二、sklearn中的KMeans 在Python的sklearn库中,KMeans算法被封装在KMeans...
scikit 在通过图片的作者共同授权下,嵌入了几个样本 JPG图片,方便用户进行算法测试。本示例使用名为china.jpg的图片,经统计其中共有96615种不同的色彩; 要求用更少的色彩来展示这张图片,从而实现类似图像压缩的目的,比如只用64种颜色; 使用K-means聚类方法,将原来的96615种色彩聚合成64个类,然后使用新的64个色彩...