解析 答案:K-means聚类算法的基本步骤如下: (1)随机选择K个数据点作为初始聚类中心。 (2)计算每个数据点到各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的类别。 (3)更新聚类中心:计算每个类别内所有数据点的均值,作为新的聚类中心。 (4)重复步骤2和3,直到聚类中心不再发生变化。
问答题:请简述K-means聚类算法的基本步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法的基本步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点,形成K个簇;计算每个簇的中心点;重复以上步骤,直到中心点不再变化或达到预设的迭代次数。
K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流程如下: 1)在数据...
# 4. 重复第2步和第3步,直到算法收敛,即中心点的位置与聚类的分配方案不再改变# K-means算法主函数,执行K-means聚类def kmeans(X, k, max_iters=100):# 初始化中心点centroids = initialize_centroids(X, k)for i in range(max_iters):# 将每个点分...
以下是K-means算法的基本流程: 1.初始化:随机选择K个数据点作为聚类中心。 2.分类:对于每个数据点,计算它与各个聚类中心的距离,并将它分配给距离最近的聚类中心所代表的类别。 3.更新:对于每个类别,重新计算该类别所有数据点的中心位置(即平均值),作为新的聚类中心。 4.重复:重复步骤2和3,直到聚类中心不再变化...
2.K-Means算法流程 对于K-Means算法,首先要注意K值的选择和K个初始化质心的选择。 对于K值的选择:我们可以通过对数据的先验经验选择合适的K值,如果没有先验条件的话,还可以通过交叉验证选择合适的K值。 对于K个初始化质心:由于我们采用启发式迭代方法,K个初始化质心的位置选择对最后的聚类结果和运行时间都有较大的...
目前常用的聚类算法k-means、k-modes、k-medoids等。 下面就让我们一起来学习其中最基本,也是最有代表性的“k-means”算法。 3.1 “k-means”算法步骤 在笔者的认知里,k-means聚类算法的步骤有5步,分别是: Step1:准备好要聚类的数据,并且决定要聚类的类别数(cluster_num) ...
一.K-means 1.算法流程 第一步:选定k个样本点作为初始聚类中心点 第二步:对每一个样本x计算其与k个聚类中心点的距离(欧式距离、余弦相似度等),并将每个样本划分到与其距离最近的聚类中心点所对应的类中 第三步:计算k个类中所有样本的均值(就是类的质心),并将每类的均值作为新的k个聚类中心 ...
K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求...
1. kmeans kmeans, k-均值聚类算法,能够实现发现数据集的 k 个簇的算法,每个簇通过其质心来描述。 kmeans步骤: (1)随机找 k 个点作为质心(种子); (2)计算其他点到这 k 个种子的距离,选择最近的那个作为该点的类别; (3)更新各类的质心,迭代到质心的不变为止。