K-Means算法介绍K-Means又称为K均值聚类,在1967年由美国加州大学的詹姆斯,麦昆教授首次提出,但类似的算法思想可以追溯到1957年的劳埃德算法。K-Means算法的流程如下图所示。随机选取K计算数据个体根据聚类中个点作为聚居与是与聚类中心的心所对应的类中心欧氏距离类进行分组计算每个分点否类中心K-Means算法理论上可以...
# 多次运行 k-means 算法并选择最优结果best_inertia = np.infbest_labels = Nonebest_centroids = Nonefor _ in range(10): kmeans = KMeans(n_clusters=3, random_state=42) labels = kmeans.fit_predict(data) if kmeans.inertia_ < best_inertia: best_inertia = kmeans.inertia_ ...
简介:k-means算法早在1957年就被发明了,最早由J. MacQueen提出。后来,Lloyd(1982年)、Hartigan(1975年)、Forgy(1965年)等学者对此算法进行了修正和改进。这个算法已被广泛应用于数据挖掘、模式识别、图像处理等领域,它可以用来识别数据集之间的模式,因此是一种十分实用的机器学习算法。本篇文章介绍了k-means算法,一...
1967年,James MacQueen在他的论文《用于多变量观测分类和分析的一些方法》中首次提出 “K-means”这一术语。1957年,贝尔实验室也将标准算法用于脉冲编码调制技术。1965年,E.W. Forgy发表了本质上相同的算法——Lloyd-Forgy算法。 什么是K-Means算法? 聚类,是将数据分成若干组,使得相同组中的数据点之间比其他组中...
1 算法起源 1967年,James MacQueen在他的论文《用于多变量观测分类和分析的一些方法》中首次提出 “K-means”这一术语。1957年,贝尔实验室也将标准算法用于脉冲编码调制技术。1965年,E.W. Forgy发表了本质上相同的算法——Lloyd-Forgy算法,所以这一算法有时也被称为Lloyd-Forgy算法。...
是有Steinhaus 1955年、Lloyd 1957 年、Ball & Hall 1965 年、McQueen 1967 年分别在各自的不同的科学研究领域独立的提出,随后许多人对此作出了许多改进。K-means聚类算法被提出已经50年了,但目前依然是应用最广泛的的划分聚类的算法之一。 对于给定的一个包含n 个d 维数据点的数据集,,,X=x1,x2,…,xi,…,...
1. 早期工作:K均值聚类概念可追溯至20世纪50年代,Hugo Steinhaus在1957年首次提出这一想法。2. 算法名称与形式化:1967年,James MacQueen在论文中首次明确描述了K均值算法,引入“K-means”这一术语。算法至今保持其原始形式,广泛应用于多个领域。3. 初始化方法:K均值的效果很大程度上依赖于初始中心...
K-Means聚类算法最早起源于信号处理,是一种最经典的聚类分析方法。它是一种自下而上的聚类方法,采用划分法实现,其优点是简单、速度快;缺点是必须提供聚类的数目,并且聚类结果与初始中心的选择有关,若不知道样本集要聚成多少个类别,则无法使用K-Means算法。Sklearn包中调用方法如下: from sklearn.cluster import K...
简单有效的改进方式是David Arthur提出的K-means++算法,该算法能够有效产生初始的聚类中心,保证初始化后的K-means可以得到O(logk)的近似解,其理论证明可以参考文献。首先随机初始化一个聚类中心C={ci};然后通过迭代计算最大概率值: 加入下一个聚类中心: ...