# 4. 重复第2步和第3步,直到算法收敛,即中心点的位置与聚类的分配方案不再改变# K-means算法主函数,执行K-means聚类def kmeans(X, k, max_iters=100):# 初始化中心点centroids = initialize_centroids(X, k)for i in range(max_iters):# 将每个点分...
(1)动画解释K-平均算法(k-means clustering)——一种流行于数据挖掘领域的聚类分析方法;(2)基于matlab的kmeans算法实例;(3)更多内容和案例在公众号“图通道”, 视频播放量 4997、弹幕量 2、点赞数 153、投硬币枚数 168、收藏人数 112、转发人数 34, 视频作者 图通
(1)动画解释K-平均算法(k-means clustering)——一种流行于数据挖掘领域的聚类分析方法;(2)基于matlab的kmeans算法实例;(3)代码请看个人简介
self.center = np.copy(self.data[choices])# 从data中随机选取k行作为随机中心 anim = FuncAnimation(self.fig,# 设置动画 func=self.update,# 回调函数,FuncAnimation会在每一帧都调用该函数 frames=np.arange(10),# 帧数 init_func=self.setup,# 动画初始化 interval=1000)# 每帧间隔 anim.save('clusteri...
1K-Means算法引入 基于相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。 图1 二维空间聚类的例子 [1] 上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立地...
K-Means算法的作者是MacQueen, 基本的数学原理很容易理解,假设有一个像素 数据集P。我们要根据值不同将它分为两个基本的数据集合Cluster1, Cluster2,使 用K-Means算法大致如下: 假设两个Cluster的RGB值分别为112,225,244和23,34,99则像素集合中的像素点 ...
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
K-Means详解 1. K-Means的工作原理 作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢?在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去...
1.K-Means 算法 K-means是一种聚类算法,将一组数据通过聚类得到k个分组算法流程: 步骤1.在数据集中随机选取k个中心点 步骤2.分别计算每个数据点到k个中心点的距离,根据距离对该数据点进行分类。 步骤3.计算同类数据点的中点作为待更新的该类中心点位置。 步骤4.更新中心点,重复步骤二,若每个数据点与其所属类...
机器学习-KMeans算法(图解算法原理) 简介 k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,也就是将数据分成K个簇的算法,其中K是用户指定的。 比如将下图中数据分为3簇,不同颜色为1簇。 K-means算法的作用就是将数据划分成K个簇,每个簇高度相关,即离所在簇的质心是最近的。 下面将...