百度试题 题目K-means算法属于什么类型的聚类算法 A.基于密度的聚类算法B.划分型聚类算法C.层次聚类算法D.网格聚类算法相关知识点: 试题来源: 解析 B 反馈 收藏
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。 其优化算法步骤为: 1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭...
K-means聚类算法是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复...
K-means算法是典型的基于距离的聚类算法,即对各个样本集采用距离作为相似性的评价指标,若两个样本集的距离越近,其相似度就越大。按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,且让簇间的距离尽量的大。最后把得到紧凑且独立的簇作为最终的目标。
K-means算法是典型的基于距离的聚类算法,即对各个样本集采用距离作为相似性的评价指标,若两个样本集的距离越近,其相似度就越大。按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,且让簇间的距离尽量的大。最后把得到紧凑且独立的簇作为最终的目标。
K-Means 是一种无监督的聚类算法,其目的是将 n 个数据点分为 k 个聚类。每个聚类都有一个质心,这些质心最小化了其内部数据点与质心之间的距离。 它能做什么 市场细分: 识别具有相似属性的潜在客户群体。 图像分析: 图像压缩和图像分割中的像素聚类。
k-means 算法是一种基于划分的聚类算法,它以 k 为参数,把 n 个数据对象分成 k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。 1. 基本思想 k-means 算法是根据给定的 n 个数据对象的数据集,构建 k 个划分聚类的方法,每个划分聚类即为一个簇。该方法将数据划分为 n 个簇,每个簇至少有一个数据对...