k-means聚类算法是一种广泛使用的聚类算法,它通过迭代的方式将数据划分为k个簇,使得簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。下面是对k-means聚类算法的伪代码描述,遵循了您提供的提示: 1. 输入和输出 输入: 数据集 D={x1,x2,...,xn}D = \{x_1, x_2, ..., x_n\}D={x1,...
k-means伪代码 k-means伪代码 1、初始化k个簇中⼼。2、更新所有样本点簇归属:样本点到哪个簇中⼼点最近就属于哪个簇。3、重新计算每个簇的中⼼点(直到簇中⼼点不再变化或达到更新最⼤次数)#k-means伪代码 import numpy as np import copy #计算欧⽒距离 def get_distance(X,Y):return np....
K-means的Python实现 以下是完整的K-means算法的Python代码示例: importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportmake_blobs# 初始化K-meansdefkmeans(X,k,n_iterations=100):# 随机选取K个初始中心initial_indices=np.random.choice(X.shape[0],k,replace=False)centroids=X[initial_indices...
1、初始化k个簇中心。 2、更新所有样本点簇归属:样本点到哪个簇中心点最近就属于哪个簇。 3、重新计算每个簇的中心点(直到簇中心点不再变化或达到更新最大次数) #k-means伪代码importnumpy as npimportcopy#计算欧氏距离defget_distance(X,Y):returnnp.sum((X-Y)**2)**0.5defcalc_mean(X):#计算中心点,...
手写k-means算法 作为聚类的代表算法,k-means本属于NP难问题,通过迭代优化的方式,可以求解出近似解。 伪代码如下: 1,算法部分 距离采用欧氏距离。参数默认值随意选的。 importnumpy as npdefk_means(x,k=4,epochs=500,delta=1e-3):#随机选取k个样本点作为中心indices=np.random.randint(0,len(x),size=k)...
K-means算法的伪代码描述如下: 其中K表示中心点的数目,u_{1},...u_{k},表示K个中心点的坐标,每个中心点代表一个聚类,因此有K个聚类。 首先随机选择K个中心点u_{i}。 每一次迭代: 第一步:根据中心点分类。根据中心点的坐标u_{i},求出每一个点到中心点距离,把这个点分类到距离最短中心点所属的类C...
kmeans聚类 Kmean算法: 一、原理简介 kmeans原理 二、流程 2.1 Kmeans算法的流程: 1. 随机确定k个初始点作为作为k个簇的质心,即均值向量初始化; 2. 对数据集中的每个点,计算到每个簇质心的距离,将每个点分配到距其最近的质心,并将其分配给该质心所对应的簇;...
下图从(a)到(f)演示了对n个样本点进行K-means聚类的过程和效果,这里k取2。 image2.jpg 二、伪代码 代码语言:javascript 复制 创建k个点作为初始的质心点(随机选择) 当任意一个点的簇分配结果发生改变时 对数据集中的每一个数据点 对每一个质心
二分k-means算法:首先将整个数据集看成一个簇,然后进行一次k-means(k=2)算法将该簇一分为二,并计算每个簇的误差平方和,选择平方和最大的簇迭代上述过程再次一分为二,直至簇数达到用户指定的k为止,此时可以达到的全局最优。 3. 高斯混合模型(GMM) ...
k-means算法属于无监督学习,没有已知的标签 k均值是发现给定数据集的K个簇的算法。 每个簇通过其质心来描述。 k均值算法的工作流程如下, 首先,给定随机的K个初始质心,然后将数据集中的每个点分配到一个簇中,过程是为每个点寻找最近的质心,并将其分配给该质心所对应的簇; 然后为每个簇更新质心,质心为所有点的...