miles = float(input("每年获得的飞行常客里程数?")) iceCream = float(input("每周所消费的冰淇淋公升数?")) datingDataMat,datingLabels = file2matrix('D:\python\Mechine learing in Action\KNN\datingTestSet2.txt') normMat,ranges,minVals = autoNorm(datingDataMat) inArr = array([miles,percentTats...
keep sth for some tim keep sth in keep still delinquent keep telling myself keep the right distan keep the whole situat keep their quarters c keep track of keep until keep up with t keep watching keep way keep working area cle keep your breath to c keep your distance keep your mouth ...
keep warm quiet keep watching my fath keep wire keep your distance keep your eyes open o keep your hand in keep your mouth shut keep your mouth shutt keep your optimistic keep yourself modest keepkeptkeptv keepat harms length keepan altitude of keephold ones temper keeper of the hound kee...
ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) #训练集归一化 normMat, ranges, minVals = autoNorm(datingDataMat) #生...
iceCream = float(input("每周消费的冰激淋公升数:"))#打开的文件名filename = "datingTestSet.txt"#打开并处理数据datingDataMat, datingLabels = file2matrix(filename)#训练集归一化normMat, ranges, minVals = autoNorm(datingDataMat)#生成NumPy数组,测试集inArr = np.array([ffMiles, precentTats, iceCrea...
需要一个distance函数以计算两个样本之间的距离。 距离的定义有很多,如欧氏距离、余弦距离、汉明距离、曼哈顿距离等等,关于相似性度量的方法可参考:机器学习中距离和相似性度量方法。 一般情况下,选欧氏距离作为距离度量,但是这是只适用于连续变量。在文本分类这种非连续变量情况下,汉明距离可以用来作为度量。通常情况下,...
methods kneighbors(X=None, n_neighbors=None, return_distance=True)- 找到一个点的K邻居。返回每个点的邻居的索引和距离。 params X:类似数组,形状(n_query,n_features)或(n_query,n_indexed)如果metric ='''precomputed'- 查询点或点。如果未提供,则返回每个索引点的邻居。在这种情况下,查询点不被视为...
trainData=[1.0,2.0;1.2,0.1;0.1,1.4;0.3,3.5];trainClass=[1,1,2,2];testData=[0.5,2.3];k=3;%%distance row=size(trainData,1);col=size(trainData,2);test=repmat(testData,row,1);dis=zeros(1,row);fori=1:row diff=0;forj=1:col ...
例如: men’s room男厕所 Chairman Mao’s works毛主席著作 a mile’s distance一英里的距离 a stone’s throw一步之遥 但如果该名词是以-s或-es结尾,则只在该名词后加“’”来构成所有格。 例如: 3 hours’walk三小时的路程 five minutes’walk五分钟路程 two miles’distance两英里的距离©...
(arrayOLines)#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列returnMat=np.zeros((numberOfLines,3))#返回的分类标签向量classLabelVector=[]#行的索引值index=0forlineinarrayOLines:#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line=line.strip()#使用s.split(str="",num...