k近邻法的特殊情况是k = 1 k=1k=1的情形,称为最近邻算法。对于输入的实例点(特征向量)x xx,最近邻法将训练数据集中与x xx最邻近点的类作为x xx的类。
k-近邻(k-Nearest Neighbor, 简称kNN)算法是一种常用的监督学习方法,其工作机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息进行预测。通常在分类任务中,使用多数表决法(majority vote method, 也叫投票法),即选择这k个样本中出现最多的类别标签作为预测结果;在...
k-近邻(k-Nearest Neighbor, 简称kNN)算法是一种常用的监督学习方法,其工作机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息进行预测。通常在分类任务中,使用多数表决法(majority vote method, 也叫投票法),即选择这k个样本中出现最多的类别标签作为预测结果;在...
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。案例介绍 如图1所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而...