相关知识点: 语言基础及运用 常识 文学常识题 试题来源: 解析 答案:K-means聚类算法是一种常用的无监督学习算法,其原理是将数据点根据特征相似性进行分组,每个组为一个簇,簇内数据点与簇内均值的距离最小化,而不同簇之间的距离最大化。应用场景包括市场细分、图像分割、文档归类等。反馈 收藏 ...
3、根据聚类结果,重新计算 k 个簇各自的中心,计算方法是取簇中所有点各自维度的算术平均数。 4、将 D 中全部点按照新的中心重新聚类。 5、重复第 4 步,直到聚类结果不再变化。 6、将结果输出。 举例说明, 假设包含 9 个点数据 D 如下(见 simple_k-means.txt), 从 D 中随机取 k 个元素,作为 k 个...
一种常见的优化方法是采用最大距离法,如:首先选取数据集中距离最大的两个点作为初始聚类中心,将剩余数据对象依据到聚类中心点距离的远近分配到相应的簇中,并更新聚类中心,然后继续寻找与聚类中心距离最远的点作为下一个中心点…… 与此类似地还有K-Means++,它是传统K-Means的改良版,同样是基于最大距离,这里结合...
结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使得算法收敛,在迭代过程中,应使最终的聚类中心尽可能的不变。 二、算法实现一般流程 K-means是一个反复迭代的过程,算法分为四个步骤: 1)选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; 2)对于样本中的数据对象,根...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: ...
k-means算法原理 K-means中心思想:事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本所属的类别以及每个类...
K-means是一种常用的聚类方法,它将数据划分为K个相似的簇,其中每个簇的中心为该簇内所有数据点的均值。以下是K-means的基本原理和步骤: 原理: K-means基于一个简单的想法:相似的数据点应该在空间中彼此靠近,并且可以通过计算每个点到各个簇中心的距离来找到这些点的簇标签。
1. K-Means的工作原理 作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢?在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。具体过程可以...
1. k-means聚类算法原理 聚类算法性能度量的文章提到若簇类相似度好簇间的相似度差,则聚类算法的性能较好。我们基于此定义k-means聚类算法的目标函数: 其中 表示当样本 划分为簇类k时为1,否则为0。 表示簇类k的均值向量。 目标函数(1.1)在一定程度上刻画了簇内样本围绕簇...