K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
很显然,欧式距离d(xi,xj)等于我们每一个点的特征去减去另一个点在该维度下的距离的平方和再开根号,十分容易理解。 我们也可以用另一种方式来理解kmeans算法,那就是使某一个点的和另一些点的方差做到最小则实现了聚类,如下图所示: 得解! 六:代码实现 我们现在使用Python语言来实现这个kmeans均值算法,首先我们...
self.clusterAssment =Noneself.labels =Noneself.sse =None# 计算两个向量的欧式距离defdistEclud(self, vecA, vecB):returnnp.linalg.norm(vecA - vecB)# 计算两点的曼哈顿距离defdistManh(self, vecA, vecB):returnnp.linalg.norm(vecA - vecB,ord=1)# 为给点的数据集构建一个包含k个随机质心的集合d...
K-means是一个反复迭代的过程,算法分为四个步骤: (1)选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; (2)对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类; (3)更新聚类中心:将每个类别中所有对象所对应的均值作为...
1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每个样本的属性值个数11 result = np.empty(m, dtype=...
K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。 什么是K均值算法? K均值算法是一种迭代的聚类算法,其基本思想是通过不断迭代优化簇...
2. K均值算法实现过程 2.1 K是什么? Means是什么? k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法 2.2 算法基本思想 以空间中k个点为中心进行聚类,对最靠近他们的对象归类,通过迭代的方法逐次更新各聚类中心的值,直至得到最好的聚类结果。
python 用sklearn实现k均值聚类算法random_state sklearn支持的聚类算法,使用到的数据集文件:一、无监督学习-聚类聚类就是对大量未知标注的数据集,按照数据内部存在的数据特征将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相似度比较小,属于无
Python编码过程 在代码中,我们首先导入了必要的库和数据集,并加载了波士顿房屋数据集。 我们对数据集进行了预处理,使用标准化方法将数据的均值转化为0,方差为1,以便更好地应用K均值聚类算法。 我们定义了名为kmeans的函数,该函数实现了...
1. 认识K-均值聚类算法 K-均值算法是最简单的一种聚类算法,属于分割式聚类算法,目的是使各个簇(共k个)中的数据点与所在簇质心的误差平方和SSE(Sum of Squared Error)达到最小,这也是评价K-means算法最后聚类效果的评价标准。 k-means算法的基础是最小误差平方和准则。其代价函数是: ...