接着,介绍K-means原理、K-means算法、K-means特征工程(类别特征、大数值特征)、K-means评估(SSE、轮廓系数),重点阐述了如何确定K值,如何选取初始中心点,如何处理空簇; 然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类具体应用; 最后,对K-means进行总结,指出K-means的优缺点,K-means的改...
参考官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans 1.用python实现K均值算法 K-means是一个反复迭代的过程,算法分为四个步骤:importnumpy as np x= np.random.randint(1,50,[20,1]) y= np.zeros(20) k= 3#1) 选取数据空间中的K个对...
我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应该被分类到的是哪一个类别当中,当然在我们实际的数据当中不会告诉我们哪个数据分在了哪一个类别当中,只会有X当中数据。在这里写代码的时候...
Python数据分析笔记:聚类算法之K均值 我们之前接触的所有机器学习算法都有一个共同特点,那就是分类器会接受2个向量:一个是训练样本的特征向量X,一个是样本实际所属的类型向量Y。由于训练数据必须指定其真实分类结果,因此这种机器学习统称为有监督学习。 然而有时候,我们只有训练样本的特征,而对其类型一无所知。这种情...
AIGC背后的技术分析 | K均值聚类算法Python实现 01、算法说明 K均值聚类算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类有一个聚类中心,即质心,每个类的质心是根据类中所有值的均值得到。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离...
使用Python实现K均值聚类算法 K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。
python k均值聚类 python k-means聚类算法 K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1、概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。
scikti-learn 将机器学习分为4个领域,分别是分类(classification)、聚类(clustering)、回归(regression)和降维(dimensionality reduction)。k-means均值算法虽然是聚类算法中比较简单的一种,却包含了丰富的思想内容,非常适合作为初学者的入门习题。关于 k-means 均值聚类算法的原理介绍、实现代码,网上有很多,但运行效率...
二、用Python实现K-Means聚类算法 1、导入数据并进行标准化 import pandas as pd inputfile = './Python数据分析与挖掘实战(第2版)/chapter5/demo/data/consumption_data.xls' data = pd.read_excel(inputfile,index_col = 'Id') data 1. 2.
Python代码如下: import numpy as np import matplotlib.pyplot as plt fromsklearn.cluster import KMeans from sklearn.datasets import make_blobs # 设置随机种子,以便结果可复现 np.random.seed(0) # 生成100个居民区的坐标点 X, _ = make_blobs(n_samples=100, centers=5, cluster_std=1.0) ...