JS散度(Jensen–Shannon divergence) 1. 概述 KL散度存在不对称性,为解决这个问题,在KL散度基础上引入了JS散度。 JS(P1∥P2)=12KL(P1∥P1+P22)+12KL(P2∥P1+P22)JS(P1‖P2)=12KL(P1‖P1+P22)+12KL(P2‖P1+P22) JS散度的值域范围是[0,1],相同则是0,相反为1...
目录 KL 散度 JS 散度 (Jensen-Shannon) Wasserstein 距离 KL 散度 KL散度又称为相对熵,信息散度,信息增益。KL 散度是是两个概率分布和 差别的非对称性的智能推荐KL-divergence 看论文1的时候遇到的,该论文首先得出了衡量两个概率分布之间的距离的公式,目标函数是使这两个概率之间的距离d( · , · )尽可能...
Jensen-Shannon散度(Jensen-Shannon Divergence, JS散度)是概率分布之间的一种相似性度量。它是基于Kullback-Leibler散度(KL散度)的对称版本,并且具有一些更好的性质,例如它总是非负的,并且是有界的。 JS散度在信息论和机器学习中广泛使用,特别是在衡量两个分布之间的相似性和区分度时。相比于KL散度,它对称且更加稳定...
KL散度凭借其在衡量分布差异方面的独特性质,在诸如变分推断、模型压缩等领域发挥着关键作用。Jensen-Shannon散度通过其对称性质,为我们提供了一种更均衡的分布比较方法,特别适用于需要无偏比较的场景。Renyi散度则通过其可调参数α,为我们提供...
Jensen-Shannon散度(JS散度)是一种对称的散度度量,用于量化两个概率分布间的相似性。它基于KL散度构建,但克服了KL散度不对称的局限性。给定两个概率分布P和Q,JS散度定义如下: Jensen-Shannon散度其中M是P和Q的平均(或混合)分布: 混合分布JS散度的第一项衡量当M用于近似P时的信息损失,第二项则衡量M近似Q时的...
2)JS散度(Jensen-Shannon divergence) JS散度也称JS距离,是KL散度的一种变形。 但是不同于KL主要又两方面: (1)值域范围 JS散度的值域范围是[0,1],相同则是0,相反为1。相较于KL,对相似度的判别更确切了。 (2)对称性 即JS(P||Q)=JS(Q||P),从数学表达式中就可以看出。
Jensen-Shannon散度(JS散度)是一种对称的散度度量,用于量化两个概率分布间的相似性。它基于KL散度构建,但克服了KL散度不对称的局限性。给定两个概率分布P和Q,JS散度定义如下: Jensen-Shannon散度 其中M是P和Q的平均(或混合)分布: 混合分布 JS散度的第一项衡量当M用于近似P时的信息损失,第二项则衡量M近似Q时的...
目录KL 散度 JS 散度 (Jensen-Shannon) Wasserstein 距离 KL 散度 KL散度又称为相对熵,信息散度,信息增益。KL 散度是是两个概率分布 和 差别的非对称性的度量。 KL 散度是用来度量使用基于 的编码来编码来自 的样本平均所需的额外的位元数。 典型情况下, 表示数据的真实分布, 表示数据的理论分布、模型分布,或...
Jensen-Shannon散度(JS散度)是一种对称的散度度量,用于量化两个概率分布间的相似性。它基于KL散度构建,但克服了KL散度不对称的局限性。给定两个概率分布P和Q,JS散度定义如下: Jensen-Shannon散度 其中M是P和Q的平均(或混合)分布: 混合分布 JS散度的第一项衡量当M用于近似P时的信息损失,第二项则衡量M近似Q时的...
📊 JS散度,也称为Jensen-Shannon散度,是一种衡量两个概率分布相似性的强大工具。它基于Kullback-Leibler(KL)散度,通过平均分布实现平滑化,具有以下显著特点:1️⃣ 对称性:JS散度在衡量分布相似性时,对两个分布的顺序不敏感。 2️⃣ 非负性:JS散度的值总是非负的,表示分布之间的差异总是存在的。