第三步,计算TF-IDF: 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。 3.jieba库实现 jieba库实现TF-IDF算法主要是通过调用extract_tags函数实现。extrac...
extract_tags()函数将原始文本作为输入,输出文本的关键词集合,代码大致分为四个部分:(1)中文分词 (2)计算词频TF (3)计算IDF (4)将所有词排序得到关键词集合。重点关注一下词频TF和IDF的计算,(2)部分代码简历一个字典freq,记录文本中所有词的出现次数。(3)部分代码计算IDF,前文提到IDF需要通过语料库计算,jieba...
jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。jieba.analyse.TextRank() 新建自定义 Text...
第三步,计算TF-IDF: 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。 3.jieba库实现 jieba库实现TF-IDF算法主要是通过调用extract_tags函数实现。extrac...