完美支持浮点数的加减乘除、四舍五入等运算。非常小只有 1K,远小于绝大多数同类库(如 Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来!参考 Double-precision floating-point formatWhat Every Programmer Should Know About Floating-Point ArithmeticWhy Computers are Bad at Al...
1. Number类型的定义 MDN中Number的定义,请参见:https://developer.mozilla.org/zh-CN/docs/Glossary/Number 在JavaScript 中, Number 是一种 定义为 64位双精度浮点型(double-precision 64-bit floating point format) (IEEE 754)的数字数据类型。在其他编程语言中,有不同的数字类型存在,比如:整型(Integers),...
JavaScript numbers are always stored as double precision floating point numbers, following the international IEEE 754 standard. This format stores numbers in 64 bits, where the number (the fraction) is stored in bits 0 to 51, the exponent in bits 52 to 62, and the sign in bit 63: ...
遇到浮点数误差问题时可以直接使用 https://github.com/dt-fe/number-precision 完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来! 参考 Double-precision floating-point format What Every Programmer...
Floating-point errors toFixed and toPrecision are subject to floating-point errors. Here is a test where the starting number is 162.295. The following should show the JavaScript results: 162.29 // toFixed(2) 162.29 // toPrecision(5)
Number.MIN_SAFE_INTEGER // 最小安全整数 -9007199254740991 只要不超过 JavaScript 中最大安全整数和最小安全整数范围都是安全的。 大数处理精度丢失问题复现 例一 当你在 Chrome 的控制台或者 Node.js 运行环境里执行以下代码后会出现以下结果,What?为什么我定义的 200000436035958034 却被转义为了 200000436035958050,...
. The reasoning behind that number is that JavaScript usesdouble-precision floating-point format ...
Also, the result can potentially be a floating-point number: varjan2011=newXDate(2011,0,1);varjul2012=newXDate(2012,6,1);jan2011.diffYears(jul2012);// 1.5 You'll have to do the rounding or flooring yourself. Parsing Date-strings must either be inISO8601 formatorIETF format(like "Mon ...
https://github.com/dt-fe/number-precision 完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来! 参考 Double-precision floating-point format ...
MAX_SAFE_INTEGER的值是9007199254740991,形成这个数字的原因是JavaScript在IEEE 754中使用double-precision floating-point format numbers(不懂)作为规定。在这个规定中能安全的表示数字的范围在-(2^53 - 1)到2^53 - 1之间。 这里安全存储的意思是指能够准确区分两个不相同的值,例如 Number.MAX_SAFE_INTEGER + ...