S. Lang, Introduction to modular forms, Grundlehren der mathematischen Wis- senschaften 222, Springer, Berlin, 1976.S. Lang, Introduction to Modular Forms, Springer-Verlag, New York, 1976.See, for example: S. L
Introduction to Modular Forms (Grundlehren der mathematischen Wissenschaften)的创作者 ··· 塞尔日·兰 作者 作者简介 ··· Serge Lang (May 19, 1927 – September 12, 2005) was a French-born American mathematician. He is known for his work in number theory and for his mathematics textbook...
S. Lang,Introduction to Modular Forms, (Springer- Verlag, Berlin, 1976).Serge Lang. Introduction to modular forms, volume 222 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1995. With appendixes by D. Zagier and Walter ...
INTRODUCTION TO ELLIPTIC CURVES AND MODULAR FORMS (Graduate Texts in Mathematics, 97)doi:10.1112/blms/18.2.213Scholl, A. JOxford University PressBulletin of the London Mathematical Society
The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the mod...
The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the mod...
Springer Koblitz N Introduction to elliptic curves and modular forms 电子版下载 星级: 125 页 97 Koblitz. Introduction to Elliptic Curves and Modular Forms. 2nd ed.[椭圆曲线和模形式引论] 星级: 257 页 Springer Koblitz N Introduction to elliptic curves and modular forms 电子版下载 3 星级:...
我们可以定义一个映射:\mathbb C/\Lambda \hookrightarrow \mathbb {CP}^2 : z \mapsto [P_{\Lambda}(z),\frac{dP_{\Lambda}}{dz}(z),1] (由紧 函数域可分离点知其为嵌入) 则其像是一条genus 1的affine的代数曲线,其上点(x,y,1)均满足y^2=4x^3-g_2x-g_3 ...
122 I'd -liz) Z-2 = l.- + 11'(Z). 11( -liz) 2z I1(Z) Using (2.35), we reduce (2.36) to showing that E 2 ( -1/z)z-2 = ~ + E 2 (z), 2mz and this is precisely Proposition 7. Proposition 15. 00 III. Modular Forms (2.36) o (2n)-12A(z) = q TI (1 - qn...
[35]MAZUR B.An introduction to the deformation theory of Galois representations,in Modular Forms and Fermat ' s Last Theorem.Springer,1997:243-311. [36]MILNE J.Michigan Math.J.46,1999:203. [37]MORISHITA M.Knots and Primes.An Introduction to Arithmetic Topology,Universitext Springer,2012. [38...