Introduction to the Modern Theory o... 实分析9.6 Topology from the Differentiable Vi...9.7 天遇8.5 陶哲轩实分析9.5 函数论与泛函分析初步9.2 微分方程动态系统和混沌导论9.5 我要写书评 An Introduction to Chaotic Dynamical Systems, 2nd Edition的书评 ···(全部 0 条) 读书笔记...
An Introduction to Chaotic Dynamical Systems 教学设计 简介 本教学设计旨在介绍混沌动力系统的基本概念和数学模型,让学生了解其背景和应用。混沌动力系统是现代数学和物理学的重要研究领域,涉及非线性动力学、统计物理学、信息论等多个学科,对于控制系统、信号处理和数据压缩等应用也具有重要意义。 目标 本教学将以如下...
当当中国进口图书旗舰店在线销售正版《【预订】An Introduction to Chaotic Dynamical Systems》。最新《【预订】An Introduction to Chaotic Dynamical Systems》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《【预订】An Introduction to Chaotic Dyn
An Introduction to Chaotic dynamical systems. 2nd Edition, by Robert L. Devaneydoi:10.1155/S1048953390000077Garry HowellJournal of Applied Mathematics and Stochastic Analysis
320 ppR.L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Manchester (1986)doi:10.1016/S0092-8240(88)80075-2JacquesBélairandLeonGlassSDOSBulletin of Mathematical BiologyR. Devaney, An Introduction to Chaotic Dynamical Systems (Benjamin/Cummings,Amsterdam, 1986)....
DefinitionofDiscreteDynamicalSystems9GoalsofThisBook12Section2.StationaryStatesandPeriodicOrbits161.StationaryStates16StableStationaryStates182.PeriodicOrbits21StablePeriodicOrbits23Section3.ChaoticDynamicalSystems251.LimitPoints,LimitSets,andAperiodicOrbits252.UnstableOrbitsandChaoticSystems30ChaoticBehavior33Section4....
An introduction to chaotic dynamical systems Not Available F Takens - 《Acta Applicandae Mathematicae》 被引量: 199发表: 1988年 AN INTRODUCTION TO CHAOTIC DYNAMICAL SYSTEMS Not Available AK Manning - 《Bulletin of the London Mathematical Society》 被引量: 112发表: 1988年 Differential equations, dyna...
Characterisation of intermittency in chaotic systems The authors discuss the characterisation of intermittency in chaotic dynamical systems by means of the time fluctuations of the response to a slight pertur... R Benzi,G Paladin,G Parisi,... - 《Journal of Physics A General Physics》 被引量: ...
This is closely related to the fact discovered in the 1960s that rather simple dynamical systems may behave “randomly,” or “chaotically.” Finally, we discuss how differential equations can define dynamical systems in both finite- and infinite-dimensional spaces....
Originally, the concept of the integrability of dynamical systems with discrete time was introduced for systems obtained by the discretization of known differential equations [11,12,16,17]. However, there are discrete dynamical systems that do not belong to this class. We consider these systems. ...