今天分享的研究者提出了一种新的基于CNN的大规模基础模型,称为InternImage,它可以从增加参数和训练数据(如ViTs)中获得增益。 与最近关注large dense kernels的CNN不同,InternImage以可变形卷积为核心算子,使我们的模型不仅具有检测和分割等下游任务所需的大有效感受野,而且具有受输入和任务信息约束的自适应空间聚合。因...
不同于近来聚焦于大核的CNN方案,InternImage以形变卷积作为核心操作(不仅具有下游任务所需的有效感受野,同时具有输入与任务自适应空域聚合能力)。所提方案降低了传统CNN的严格归纳偏置,同时可以学习更强更鲁棒的表达能力。ImageNet、COCO以及ADE20K等任务上的实验验证了所提方案的有效性,值得一提的是:InternImage-H在C...
来自浦江实验室、清华等机构的研究人员提出了一种新的基于卷积的基础模型,称为 InternImage,与基于 Transformer 的网络不同,InternImage 以可变形卷积作为核心算子,使模型不仅具有检测和分割等下游任务所需的动态有效感受野,而且能够进行以输入信息和任务为条件的自适应空间聚合。InternImage-H 在 COCO 物体检测上达到 ...
InternImage不仅在学术研究中取得了显著成果,还具备广阔的实际应用前景。在目标检测、图像分割等下游任务中,InternImage能够提供更准确、更鲁棒的预测结果,为自动驾驶、智能医疗、安防监控等领域带来实质性的帮助。 同时,InternImage的成功也为我们提供了宝贵的启示:在追求更高性能的视觉基础模型时,我们不应局限于传统的架...
在上一篇文章中完成了前期的准备工作,见链接:InternImage实战:使用InternImage实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分 完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库 在train.py导入 os.environ['CUDA_VISIBLE_DEVICES']="0,1" 选择显卡,index从0开始,比如一台机器上...
来自浦江实验室、清华等机构的研究人员提出了一种新的基于卷积的基础模型,称为 InternImage,与基于 Transformer 的网络不同,InternImage 以可变形卷积作为核心算子,使模型不仅具有检测和分割等下游任务所需的动态有效感受野,而且能够进行以输入信息和任务为条件的自适应空间聚合。InternImage-H 在COCO物体检测上达到 65.4...
InternImage是一种新的基于卷积的基础模型,与最近关注的大核卷积的CNN网络不同,InternImage以可变形卷积作为核心算子,使模型不仅具有检测和分割等下游任务所需的大尺度有效感受野,而且能够进行以输入信息和任务为条件的自适应空间聚合。 动机 传统卷积神经网络的局限 ...
来自浦江实验室、清华等机构的研究人员提出了一种新的基于卷积的基础模型,称为 InternImage,与基于 Transformer 的网络不同,InternImage 以可变形卷积作为核心算子,使模型不仅具有检测和分割等下游任务所需的动态有效感受野,而且能够进行以输入信息和任务为条件的自适应空间聚合。InternImage-H 在 COCO 物体检测上达到 ...
2022年11月10日: 🚀 InternImage-H 在ADE20K语义分割数据集上取得62.9 mIoU的SOTA性能! “书生2.5”的应用 1. 图像模态任务性能 在图像分类标杆数据集ImageNet上,“书生2.5”仅基于公开数据便达到了 90.1% 的Top-1准确率。这是除谷歌与微软两个未公开模型及额外数据集外,唯一准确率超过90.0%的模型,同时也是...
InternImage-H(1B)/G(3B) TensorRT inference for classification/detection/segmentation models Classification code of the InternImage series InternImage-T/S/B/L/XL ImageNet-1K pretrained model InternImage-L/XL ImageNet-22K pretrained model