Integration of vector-valued functions and optimal estimation of stochastic processesIn this section. we investigate the so-called prognosis problem which can be formulated as follows. Suppose that two stochastic processes X and Y are given, such that X is not accessible for a direct observation, ...
On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functionsAuthor links open overlay panelHans-Peter HeinzShow more Add to Mendeley Share Cite https://doi.org/10.1016/0362-546X(83)90006-8Get rights and content...
A unified approach to the existing three types of variational principles for vector valued functions This paper att empts to give a unified approach to the existing three types of variational principles for vector valued functions: A. B. Nemeth (1986), Chr... GY Chen,XX Huang - 《Mathematica...
Ideas and techniques from nonstandard theories of measure spaces and Banach spaces are brought together to give a further study of nonstandard vector measures. An integration theory of real valued functions with respect to Banach space valued measures is developed. Geometric properties of nonstandard ...
In the first part, integration theory is developed from the start in a general setting and immediately for vector-valued functions. This material can hardly be found in other textbooks. The second part covers various topics related to integration theory, such as spaces of measurable functions, ...
R. B. B. Lucyshyn-Wright, Riesz-Schwartz extensive quantities and vector- valued integration in closed categories, Ph.D. thesis, York University, 2013, arXiv:1307.8088.Riesz-Schwartz extensive quantities and vector-valued integration in closed categories - Lucyshyn-Wright - 2013...
Vector-Valued Function Copy Code Copy Command Create the vector-valued function f(x)=[sinx,sin2x,sin3x,sin4x,sin5x] and integrate from x=0 to x=1. Specify 'ArrayValued',true to evaluate the integral of an array-valued or vector-valued function. Get fun = @(x)sin((1:5)*x); ...
Fremlin D.H., Mendoza J.: On the integration of vector-valued functions. Illinois J. Math. 38(1), 127–147 (1994) MathSciNet MATH Google Scholar García-Pacheco F.J., Martín M. , Seoane-Sepúlveda J.B.: Lineability, spaceability, and algebrability of certain subsets of function sp...
So the function func_energy takes one value of E each time from the array E and returns a vector (Say N1)for each value of E. I need to integrate this array valued function N1 with respect to E using quadgk. The lower limit of this integration ...
This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in ... (展开全部) 目录 ··· Front Matter Part 3: Differentiation of Functions of Several Variables: Metric Spaces Convergence and Continuity in Met...