integration by substitution 代换积分法 effect of substitution 替代效应 electrophilic substitution 亲电子取代作用 substitution swap 替代掉换系债券掉换(*bond swap)的一种,指为了改善原有债券的一个或数个性质(品质、收益率等),而同时卖出某一证券以买入另一种证券的操作方式。 substitution class phr. n....
Integration by Substitution (also called u-Substitution or The Reverse Chain Rule) is a method to find an integral, but only when it can be set up in a special way.
integration by substitution 英[ˌɪntɪˈgreɪʃən bai ˌsʌbstɪˈtu:ʃən]美[ˌɪntɪˈɡreʃən baɪ ˌsʌbstɪˈtuʃən]释义 常用 牛津词典 释义 代换积分法;拍照翻译 语音翻译 智能背词 下载金山词霸APP...
The theoretical basis for integration by substitution is the chain rule for differentiation, which says that$$\\frac{d} {{dx}}f(g(x))\\; = f'(g(x))\\;g'(x)$$. Regarding integration as the reverse of differentiation leads us to integrate both sides of this equation to write $$\...
Common FunctionsFunctionIntegral Constant∫a dxax + C Variable∫x dxx2/2 + C Square∫x2dxx3/3 + C Reciprocal∫(1/x) dxln|x| + C Exponential∫exdxex+ C ∫axdxax/ln(a) + C ∫ln(x) dxx ln(x) − x + C Trigonometry (x inradians)∫cos(x) dxsin(x) + C ...
Use integration by substitution to show that if y is a continuous function of x on the interval a≤ x≤ b, where x=f(t) and y=g(t), then∫^b_a y dx= ∫^(t_2)_(t_1)g(t)f'(t)dtwhere f(t_1)=a, f(t_2)=b, and both g and f' are continuous on [t_1,t_2]....
翻译 简明 integration by substitution 英[ˌɪntɪˈgreɪʃən bai ˌsʌbstɪˈtu:ʃən] 美[ˌɪntɪˈɡreʃən baɪ ˌsʌbstɪˈtuʃən] 释义 代换积分法 行业词典 数学 换元积分法 释义 行业词典...
Section7.1IntegrationbySubstitution •Seeifyoucanfigureoutwhatfunctionswouldgivethefollowingderivatives 4x3sin(x4)dx6(2x24x)5(4x4)dx2te(t21)dt4x3x41dx •Recallthechainrule df(g(x))f'(g(x))g'(x)dx f(g(x))'f'(g(x))g'(x)•Nowimaginetakingtheantiderivativeofbothsides ddxf(g(x)...
What are the steps of integration by substitution? To perform integration by substitution, first ensure that the function meets the criteria for u-substitution. Identify the inner and outer functions, find the derivative of the inner function, and ensure that the composite function is multiplied by...
Let U and V be functions of x. From the product rule:d(UV)/dx = V (dU/dx) + U (dV/dx) Integrating both sides with respect to x and rearranging,∫ U(dV/dx).dx = UV - ∫ V (dU/dx) dx Given some product to integrate, we arrange for U and dV to make the integral on ...