Integral of tan xis, ∫ tan x = ln (sec x) + C (or) -ln |(cos x)+C Integral of csc xis, ∫ cosec x dx = ln |cosec x - cot x| + C (or) - ln |cosec x + cot x| + C (or) ln | tan (x/2) | + C Integral of sec xis, ∫
∫cosec2(u) du = -cot(u) + C ∫sec(u) tan(u) du =sec(u) + C ∫cosec(u) cot(u) du = - cosec(u) + C ∫(a2 - u2)-1/2du = - arcsin(u/a) + C ∫(a2 + u2)-1/2du = (1/a) arctan(u/a) + C ∫(a2 - u2)-1/2du = - arcsin(u/a) + C d/dx[...
Integration by parts is the technique used to find the integral of the product of two types of functions. The popular integration by parts formula is, ∫ u dv = uv - ∫ v du. Learn more about the derivation, applications, and examples of integration by p
Answer to: Evaluate: Integration of (sec^2 x(tan x - 2)^3 - {cosec x * cot x} / {(cosec x - 2)^5} - e^x square root of {ex + 1}) dx By signing up,...
Integrate [cosec(30°+x)-cosec(60°+x)] dx in terms of tan x I proceeded as follows $$\int\frac{2(\sqrt3-1)(cosx-sinx)}{2(\sqrt3+2sin2x)}dx$$ $$\int\frac{(cos(\pi/6)-sin(\pi/6))(cosx-sinx)}{(sin(\pi/3)+sin2x)}dx$$ $$\frac{1}{2}\int\frac{cos(\pi/6...
\(\int \tan x d x=-\log |\cos x|+C\) \(\int \cot x d x=\log |\sin x|+C\) \(\int \sec x d x=\log |\sec x+\tan x|+C\) \(\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+C\)....