M Altman. An integral test for series and generalized contractions[J].American Mathematical Monthly 1975.Alt man M. An Integral Test for Series and Generalized Cont ractions[J ] . Amer Mat h Mont hly , 1975 (82) :8272829.Alt man M.An Integral Test for Series and Generalized Contractions....
Use the Integral Test to determine whether the given series is convergent or divergent: (a) sum_n=1^infinity n/sqrt(2 + n^2) (b) sum_n=1^infinity 1/(2n + 1)^3 Use the Integral Test to determine whether the series is convergent or divergent....
Integral Test for Series Convergence: Suppose {eq}f(x) {/eq} is a decreasing function on some interval {eq}[n, \infty) {/eq}, where {eq}n {/eq} is an integer. Then the infinite series {eq}\displaystyle \sum_{k=n}^\infty f(k...
index: click on a letter ABCDE FGHIJ KLMNO PQRST UVWXY ZA to Z index For aseriesthatconvergesby theintegral test, this is a quantity that measures how accurately thenth partial sumestimates the overallsum. See also Remainder of a series,improper integral,convergence tests,convergent series,diver...
结果1 题目 Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.∑_(n=1)^∞(lnn+1)/(n^2) 相关知识点: 试题来源: 解析 Converges 反馈 收藏 ...
积分判别-Integral Test 1.1.Harmonic Series(调和级数) 此篇以及以下几连续篇均是在于介绍非负项目的级数,明确级数中各个概念的关系十分重要,有助于构建正确的知识体系 回顾:前一篇介绍的nth term test说明第n项极限不存在或者非0就发散,但是:这跟发散是一个充分不必要条件!!!也就是说,即使发散也不一定满足这个...
The function f(x)=1(√ (x+4))=(x+4)^(-1/2) is continuous, positive, and decreasing on [1,∞ ), so the Integral Test applies.\begin{split}\int _{1}^{\infty }(x+4)^{-\frac{1}{2}}\d x&=\lim\limits _{t\to \infty }\int _{1}^{t}(x+4)^{-\frac{1}{2}}\d...
Understand what a convergent and a divergent integral is. Learn how to use the integral test for convergence to find out if a series converges, and...
19. This paper is aimed at functions, function and a series of parameter improper integral uniform convergence of discriminate method to make a brief summary. 本文主要是针对函数列、函数项级数以及含参量反常积分的一致收敛的判别方法作出一个简单的总结。
Find: 1) Consider the series \sum_{n=1}^{\infty}\frac{1}{n^5} a) USE THE INTEGRAL TEST to show that the series converges (This will allow you to do part (c) below). b) Approximate the sum of the seri Use inte...