Answer to: Evaluate: Integral sec^3(x) dx, let u = sec(x). By signing up, you'll get thousands of step-by-step solutions to your homework...
Evaluate integral of sec^3 \ x \ tan \ x \ dx Use integration by parts to find the following integral: \int x \cos(3x+2) dx Use integration by parts to find: the integral of (x^3)(1 + x^2)^(3/2) dx. Use integration by parts to find integral x sqrt(x+1) dx. Use ...
The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr... 08:03 Evaluate: int(dx)/(x^3sqrt(x^2-1)) 06:47 Evaluate : int(2x)/((1-x^2)sqrt(x^4-1))dx 07:06 Evaluate: intsqrt(secx-1)dx 06:17 Evaluate: intsqrt((3-x)/(3+x))sin^(-1)(1/6sqrt...
5. ∫11−x2dx=arcsinx+c 6. ∫cosxdx=sinx+c 7. ∫sinxdx=−cosx+c 8. ∫1cos2xdx=∫sec2xdx=tanx+c 9. ∫1sin2xdx=∫csc2xdx=−cotx+c 10. ∫secxtanxdx=secx+c 11. ∫cscxcotxdx=−cscx+c 12...
\int xe^{x^2} dx Evaluate the integral. \int x^4}{e^{4{x^5} - 1 \ dx} Evaluate the integral. \int e^{2x}\;dx Evaluate the integral \int 5x(x^2 +1) \, dx Evaluate the integral. \int \cos^3 x dx Evaluate the integral \int \limits^0_{-\pi/6} 4 \sec^3x \ dx...
Also, we will be using the derivative of the tangent trig function. d(tanx)dx=sec2x Answer and Explanation:1 ∫tan(3x)sec2(3x)etan2(3x)dx. First we will perform ausubstitution. {eq}\displaystyle{ u = \tan^23x\du... ...
Ahmed's Integral∫01tan−1(x2+2)(x2+2)(x2+1)dx 方法一: 令I=∫01tan−1(2+x2)(1+x2)2+x2dx 及 f(t)=∫01tan−1(t2+x2)(1+x2)2+x2dx 其中f(1)=I. ⇒f′(t)=∫01dx(1+x2)2+x2ddttan−1(t2+x2)=∫01dx(1+x2)2+x22+x21+(t2+x2)2=...
NCERT solutions for CBSE and other state boards is a key requirement for students. Doubtnut helps with homework, doubts and solutions to all the questions. It has helped students get under AIR 100 in NEET & IIT JEE. Get PDF and video solutions of IIT-JEE Mains & Advanced previous year pap...
∫ tan^3x/cos^4xdx =∫ tan^3x*sec^4xdx =∫ tan^3x*(tan^2x+1)*sec^2xdx 令u=tanx du=sec^2xdx =∫u^3(u^2+1)du =∫(u^5+u^3)du =1/6u^6+1/4u^4+C =1/6 tan^6x+1/4tan^4x+C 如图
{n+s}\,dt\,dx \\& \qquad{}+(\kappa_{\beta}-\kappa_{\gamma})\sum _{i=0}^{M} \sum_{j=0}^{M} \sum_{k=0}^{i}\sum _{s=0}^{j} i j c_{ij} \\& \qquad{}\times\frac{(i + k - 1)! \Gamma(2 +k) \Gamma(\beta-k-2) \sec(\frac{\pi \beta}{2}) \sin...