3188 -- 3:37 App 求不定积分Integral of (Sqrt[cotx] - Sqrt[tanx]) dx 1.3万 6 2:37 App 重制版:求积分 Integral of (secx)^3 dx 3万 37 7:24 App 有理函数不定积分4 Integral of 1/(x^6 + 1) dx 4006 3 3:06 App 方法1-常规方法计算积分 ∫cos(lnx) dx ∫sin(lnx) dx ...
7268 10 6:13 App 求不定积分 Integral of Power[tanx, (3)^-1] dx 2617 3 3:24 App 求定积分 Integral of (sin^3 x)/(sin^3 x + cos^3 x) from 0 to pi/2 5558 6 3:15 App 求不定积分 Integral of x^5/Sqrt[x^3 + 1] dx 1739 3 4:53 App 求不定积分 ∫(x^2+20)/(...
Evaluate the integral: integral tan x (1 + sec^4 x)^{3 / 2} dx. Integrate: integral of (sec^2 x)/(3 + tan^2 x) dx. Evaluate the following integral. (a) \int sec^2x \space tanx dx (b) \int (x^3 +x)^{10}(3x^2 + 1) dx ...
哈哈,第二个积分目测就能看出答案,第一个确实有点困难。up出这个对比应该是想表达,两个不定积分形式上虽然有点像,但是实际上结果差异是很大的。 2022-01-22 17:023回复 故事说给枕头听- 第一题分子分母同除cos²x,分子凑微分dtanx,分母sec²x利用三角恒等式化为tan²x+1分母就是2tan²x+1然后套...
Homework Statement Evaluate the definite (from -0.3 to 0.3) integral ∫tanxdx Homework Equations (dy/dx)tanx=(secx)^2 The Attempt at a Solution Using...
Integration by Parts is a special method of integration that is often useful when two functions are multiplied together. Let,f(x)andg(x)be 2 functions ofxthen, ∫f(x)∗g(x)dx=f(x)∫g(x)−∫(ddx(f(x))∗∫g(x))is known integration by parts. ...
∫ dx =x+C ∫ cosxdx = sinx+C ∫ sinx dx = -cosx+C ∫ sec2x dx = tanx+C ∫ cosec2x dx = -cotx+C ∫ sec2x dx = tanx+C ∫ secx tanxdx = secx+C ∫ cscx cotx dx = -cscx+C ∫1/(√(1-x2))= sin-1 x + C ∫-1/(√(1-x2))= cos-1 x + C ∫1/(1+x2)...
(i)Findtheindefiniteintegral tanxdx. Hint:Usetanx= sinx cosx andsubstituteu=cosx. (ii)Usetwointegrationbyparttofindtheindefiniteintegral x 2 e x dx. PracticeQuestions 2.Evaluatethefollowingintegralsbyusingintegrationbyparts. (i) 1/2 0 xe 2x dx.(ii) π/4 0 θsin4θdθ.(iii) 2...
inte^x((2tanx)/(1+tanx)+cot^2(x+pi/4))dxi se q u a lto e^xtan(pi/4-x)... 09:34 The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(... 04:35 Ifint(dx)/((x+2)(x^2+1))=aln(1+x^2)+btan^(-1)x+1/5ln|x+2|+C Then (a...
Usetanx=sinxcosxandsubstituteu=cosx.(ii)Usetwointegrationbyparttofindtheindefiniteintegral x2exdx.PracticeQuestions2.Evaluatethefollowingintegralsbyusingintegrationbyparts.(i) 1/20xe2xdx.(ii) π/40θsin4θdθ.(iii) 21t2lntdt.Solution(i)Chooseu=xanddv=e2xdx.Thendu=dxandv=12e2xdx.So,...