Integral of (sin x)(sec^2(cos x)) dx. Use the substitution formula to evaluate the integral 2 pi pi / 3 4 cos 3 x sin x d x Evaluate the integral integration by parts integral 0^fraction pi 3 sin x ln cos x dx Integrate sin x dx from x = 0...
Answer to: Evaluate the indefinite integral. Integral of cos x sin(sin x) dx. By signing up, you'll get thousands of step-by-step solutions to your...
−x1cos(xt)+C Hide Steps Solution steps ∫sin(xt)dt Apply u-substitution =∫xsin(u)du Take the constant out: ∫a⋅f(x)dx=a⋅∫f(x)dx=x1⋅∫sin(u)du Use the common integral: ∫sin(u)du=−cos(u)=x1(−cos(u)) Substitute back u=xt=x1(−cos(xt)) Simplify=−...
百度试题 结果1 题目The integral of cos(x) dx is ___. A. sin(x) B. -sin(x) C. cos(x) D. -cos(x) 相关知识点: 试题来源: 解析 A。对 cos(x)积分得 sin(x)。选项 B、C、D 都不符合。反馈 收藏
1.Identify the integral: We need to find the integral of the cosine function with respect tox. 2.Recall the antiderivative: The antiderivative ofcos(x)issin(x). 3.Add the constant of integration: When computing indefinite integrals, we must include a constant of integration, typically denoted...
Calculate the Integral of … CLR+–×÷^√f(x)π() √3√4√n√ You can also input: •sqrt(…) •root(n, …) lnlog10lognexpexabs|x| sincostancscseccot arcsinsin-1arccoscos-1arctantan-1 arccsccsc-1arcsecsec-1arccotcot-1 ...
第一个注意到分母可以变成【3+cos(2x)】/2而正好sin(2x)dx=-dcos(2x)/2题目就转化为-∫dcos(2x)/【3+cos(2x)】 2022-01-23 12:134回复 晓之车高山老师 其实up表达的意思就是,被积函数某个地方稍有改动,对应不定积分表达式就可能有很大的变化,甚至完全不同 2022-01-24 03:072回复 QNのstarlake up主...
Integral of sin(x)^3 by x: cos(x)^3/3-cos(x)+C To compute the integral ofsin3(x)with respect tox, follow these steps: 1.Use the identity forsin3(x): This can be rewritten as: 2.Split the integral: 3.Compute the first integral: ...
A。解析:对于\(\int x\cos xdx\),使用分部积分法,设\(u = x\),\(dv=\cos xdx\),则\(du = dx\),\(v=\sin x\)。根据分部积分公式\(\int u dv=uv-\int v du\),得到\(\int x\cos xdx=x\sin x-\int\sin xdx=x\sin x+\cos x + C\)。选项B中的换元法不适用于此积分。选项C中...
fun =function_handle with value:@(x,y,z)y.*sin(x)+z.*cos(x) Integrate over the region0≤x≤π,0≤y≤1, and−1≤z≤1. q = integral3(fun,0,pi,0,1,-1,1) q = 2.0000 Integral over the Unit Sphere in Cartesian Coordinates ...