Home>Math>Trigonometry>Arcsin> Arcsin integral Integral of arcsinWhat is the integral of the arcsine function of x?The indefinite integral of arcsine function of x is:Arcsin function ►See alsoArcsin Arcsin calculator Arcsin of 0 Arcsin of 1 Arcsin of infinity Arcsin graph Derivative of arcsin...
Evaluate the indefinite integral. Integral of ((arctan x)^2)/(1 + x^2) dx. Evaluate the indefinite integral: integral arctan (x^7) dx. Evaluate \int x \arcsin x \, dx Evaluate the indefinite integral: integral of ((tan^(-1) 3x) / (1 + 9x^2)) dx. ...
Answer to: First make a substitution and then use integration by parts to evaluate the integral. Integral of (arcsin(ln x))/x dx. By signing up,...
Evaluate the following definite integral. Integral from 0 to 1/sqrt(2) of (arcsin x)/(sqrt(1 - x^2)) dx. Evaluate the integral \int \frac{x^3}{\sqrt{x^2-16 \, dx using trignometric substitution Evaluate the integral \int \sqrt{1 - 36x^2}dx using trig sub. ...
What is the integral of the arctangent function of x?The indefinite integral of the arctangent function of x is:See alsoArctan Derivative of arctan Arctan calculator Arctan of 0 Arctan of 2 Integral of arcsinWrite how to improve this page Submit Feedback ...
Evaluate: A) integral of arcsin(3x) dx. B) integral from 1 to 2 of x*ln x dx. 1) Evaluate the integral. \int_1^{36} \sqrt {\frac{5}{x dx 2) Evaluate the integral. \int_0^{\frac{2\pi}{3 \frac{ 3 \sin {\theta} + 3 \sin {\theta} \tan^2 {\theta{\sec^2 {\th...
Calculate the Integral of … CLR+–×÷^√f(x)π() √3√4√n√ You can also input: •sqrt(…) •root(n, …) lnlog10lognexpexabs|x| sincostancscseccot arcsinsin-1arccoscos-1arctantan-1 arccsccsc-1arcsecsec-1arccotcot-1 ...
D2D2 -direction curve of α(t)α(t) is as follows: λ(t)=(√2arctanh(t√2√t2+1)−arcsinh(t)+d1,2arctan(√t2+1)−√t2+1+d2,2arcsinh(t)−√2arctanh(t√2√t2+1)+d3),λ(t)=2arctanht2t2+1−arcsinh(t)+d1,2arctant2+1−t2+1+d2,2arcsinh(t)−2arc...
23.∫dua2−u2−−−−−−√=arcsinua+C,a>0∫dua2−u2=arcsinua+C,a>0 24.∫dua2+u2=1aarctanua+C∫dua2+u2=1aarctanua+C 25.∫duuu2−a2−−−−−−√=1aarcsecua+C∫duuu2−a2=1aarcsecua+C 26.∫udv=uv−∫vdu∫udv=uv−∫vdu...
Evaluate the following integral: integral of x*arcsin(x^2) dx. Evaluate the integral: integral {4 x^2 - 3 x + 2} / {x^3 - x^2 - 2 x} dx. Evaluate the integral: integral of e^(x + e^x) dx. Evaluate the integral: integral 17 / (x - 1)(x^2 + 16) dx. ...