1x1 x^2^2的积分| integral of 1(x(1+x^2)^2)安常投资 立即播放 打开App,流畅又高清100+个相关视频 更多 18 0 10:10 App x^2的积分但没有权力规则| integral of x^2 but no power rule 37.2万 19 01:33 App 神奇的数字2025,卡布列克数、平方数、哈沙德数、乘法表总和 1.0万 5 00:27...
35 derivative of the factorial vs factorial of the derivative【阶乘的导数与导数的阶乘】 06:51 Complex Analysis harmonic functions and differential operators【复分析调和函数与微分算子】 07:48 An interesting nested roots trigonometric integral【一个有趣的嵌套根三角积分】 08:53 A nice little proof for...
The lagrangian for the action occurring in the path integral solution of the nonlinear Fokker-Planck equation with constant diffusion function will be derived by means of a straightforward Fourier series analysis. In this manner the path between the prepoint and the postpoint in the short time ...
The Sugeno integral is the functional F1(Ω) → [0, 1] defined in this way: (2.9)∮fdμ=:∨x∈|0,1|(x∧μ(Cf(x))). The fundamental properties of the Sugeno integral are the following: (Su. 1) BASIC VALUES ∲b(c,C)dμ=c∧μ(C)∀c∈[0,1],∀C∈A. PROOF If f ...
摘要: simplified proof and extension of integral properties of gravity waves of finite amplitude: yu, zhouwen and pingxing ding, 1987. acta oceanol. sin. (english version), 6(3):335–343DOI: 10.1016/0198-0254(88)92379-5 年份: 1988 ...
In this short note a new proof of the monotone con- vergence theorem of Lebesgue integral on \\sigma-class is given. DT Hoa - arXiv e-prints 被引量: 0发表: 2011年 Simplified proof of monotone convergence theorem for Henstock-Kurzweil integral The paper introduces Henstock-Kurzweil integral...
Double Integral Involving Logarithmic and Quotient Function with Powers Expressed in terms of the Lerch Function In this work the authors use their contour integral method to derive the double integral given by $\\int_{0}^{\\infty}\\int_{0}^{\\infty}\\frac{x^{m-1} y^{... R Reynold...
The distribution of values of Mahler's measure Theorem 1.1. For each positive integer N λ2N+2(VN+1) = 2π ̂ hN(N + 1). Proof. The volume of VN+1 is given by ∫ (1.6) λ2N+2(VN+...Chern, S., Vaaler, J.D.: The distribution of values of Mahler’s ... SJ Chern,JD...
The principal ingredient of the proof is to connect this question with the geometric invariant theory of polynomials. Applications to binary forms, class numbers, quadratic forms and to families of cubic surfaces are given at the end. 展开 ...
Einstein's nice little proof for E=mc^2【爱因斯坦给E=mc^2的漂亮的小证明】 05:44 The most beautiful result in calculus【微积分中最美的结果】 12:43 An interesting variation of the gaussian integral【高斯积分的一个有趣的变体】 09:30 A calculus based proof for E=mc^2【基于微积分的E...