∫f(g(x))g′(x)dx Where: g′(x)is derivative ofg(x) In this integral, we will assumeu=g(x)and integrating this integral with respect todu After substitution, the integral becomes: ∫f(u)du Answer and Explanation:1 The integral is given by: ...
2. ∫xadx=xa+1a+1+c 3. ∫1xdx=ln|x|+c 4. ∫11+x2dx=arctanx+c 5. ∫11−x2dx=arcsinx+c 6. ∫cosxdx=sinx+c 7. ∫sinxdx=−cosx+c 8. ∫1cos2xdx=∫sec2xdx=tanx+c 9. ∫1sin2xdx=∫csc2xdx=−cotx+...
{eq}\displaystyle \int \ln(x^2+1) \ dx {/eq} Integration by Parts The process of integration by parts is applied into integrals where the integrand is a product of two functions. in integration by parts, the integral is defined as {eq}\displaystyle \int u\,dv...
有点难度的积分 Integral of ln (Sqrt[x + 1] + Sqrt[x]) dx Mathhouse 关注 专栏/有点难度的积分 Integral of ln (Sqrt[x + 1] + Sqrt[x]) dx 有点难度的积分 Integral of ln (Sqrt[x + 1] + Sqrt[x]) dx 2022年01月31日 17:435813浏览· 47点赞· 9评论...
( (ln)(x)dx) 相关知识点: 试题来源: 解析 Since ( d) is constant with respect to ( x), move ( d) out of the integral.( d∫ (ln)(x)xdx)Integrate by parts using the formula( ∫ udv=uv-∫ vdu), where ( u=(ln)(x)) and ( dv=x).( d((ln)(x)(1/2x^2)-∫ 1/2x^...
∫02|2x−1|dxSplitting an Absolute Value Integral into Two PartsIn order to integrate a function involving absolute value, we first must determine where the function inside the absolute value is positive or negative. Then we split the integral into two separate integrals based on tha...
Evaluate the integral from 2 to infinity of [(2x^2 + 3x +1)/((x-1)^2(x^2+3))] dx Evaluate the integral from 0 to infinity of 4x^3 e^(-x^4) dx. Evaluate the integral from 1 to infinity of (ln (x)/x) dx Evaluate the integral from 0 to infinity of 1/(1 + x^2) ...
\int_{0}^{1}x^{c{x}^a}dx=\int_{0}^{1}1+cx^a\ln x+\frac{1}{2!}c^2x^{2a}(\ln x)^2+\frac{1}{3!}c^3x^{3a}(\ln x)^3+...dx 然后再对单项分别进行积分 \int_{0}^{1}x^{c{x}^a}dx=\int_{0}^{1}dx+c\int_{0}^{1}x^a\ln xdx+\frac{c^2}{2!}\in...
升级到 PRO 应用程序 导览integral (x+1) ln(x)/(x(x-1)) dx自然语言 数学输入扩展键盘示例上传随机
百度试题 结果1 题目Calculate the integral:∫_2^(+∞)(dx)(x^2-1)Which answer is CORRECT?12ln 3ln 31212ln x 相关知识点: 试题来源: 解析 A 反馈 收藏