神经网络领域近年来出现了很多激动人心的进步,斯坦福大学的 Joyce Xu 近日在 Medium 上谈了她认为「真正重新定义了我们看待神经网络的方式」的三大架构: ResNet、Inception 和 Xception。机器之心对本文进行了编译介绍,更多架构可参阅机器之心文章《10 大深度学习架构:计算机视觉优秀从业者必备(附代码实现)》。 过去几...
图上部是 Inception-ResNet v1 的 stem。图下部是 Inception v4 和 Inception-ResNet v2 的 stem。(图源:https://arxiv.org/pdf/1602.07261.pdf) 它们有三个主要的 Inception 模块,称为 A、B 和 C(和 Inception v2 不同,这些模块确实被命名为 A、B 和 C)。它们看起来和 Inception v2(或 v3)变体非常...
Christian Szegedy等人将两个模块的优势进行了结合,设计出了Inception-ResNet网络。(inception-resnet有v1和v2两个版本,v2表现更好且更复杂,这里只介绍了v2)inception-resnet的成功,主要是它的inception-resnet模块。inception-resnet v2中的Inception-resnet模块如下图: Inception-resnet模块之间特征图尺寸的减小如下...
1、在Inception v3的基础上发明了Inception v4,v4比v3更加复杂,复杂到不可思议 2、结合ResNet与GoogLeNet,发明了Inception-ResNet-v1、Inception-ResNet-v2,其中Inception-ResNet-v2效果非常好,但相比ResNet,Inception-ResNet-v2的复杂度非常惊人,跟Inception v4差不多 3、加入了Residual Connections以后,网络的训练...
四、构建Inception-ResNet-v2网络 1.自己搭建 下面是本文的重点 InceptionResNetV2 网络模型的构建,可以试着按照上面的图自己构建一下 InceptionResNetV2,这部分我主要是参考官网的构建过程,将其单独拎了出来。 from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from ten...
是在inception v3基础上结合mobilenet和resnet提出的改进。传统的模块如下: 添加mobilenet中的思想,改进如下: 也就是先进行1x1卷积,然后对每一个通道的feature map分别采取3x3卷积,最后进行concat。 在此模块基础上,添加resnet结构,故Xception网络结构图如下: ...
2. Inception-resnet-v1 & Inception-resnet-v2 图2.1 Inception-resnet-v1 & Inception-resnet-v2的结构图 2.1 Inception-resnet-v1的组成模块 图2.1.1 图2.1的stem和Inception-ResNet-A部分结构图 图2.1.2 图2.1的Reduction-A和Inception-ResNet-B部分结构图 ...
他们试着将Residual learning的思想应用在inception网络中,搞出了性能不错的Inception-Resnet v1/v2模型,实验结果表明Residual learning在Inception网络上确实可行,就此他们似乎可以拱手认输了。认输?岂有此理,自视甚高的Googlers们才不干呢。他们做尽实验,费力表明Residual learning并非深度网络走向更深的必需条件,其只是...
为了提升卷积神经网络的性能,v4版本将残差连接的思想引入v3,即Inception-ResNet网络。这种架构通过将残差连接融入网络,使得深度学习过程变得更加容易。在Inception网络中,"Inception"一词来源于电影《盗梦空间》,反映了网络结构的特性。Inception block通过并行使用不同大小的卷积核,并在3*3卷积核之前使用...
昨天,谷歌宣布开放 TF-Slim,这是一个在 TensorFlow 中定义、训练、和评估模型的轻量软件包,同时它还能对图像分类领域中的数个有竞争力的网络进行检验与模型定义。今天,谷歌再次宣布开放 Inception-ResNet-v2,一个在 ILSVRC 图像分类基准上取得顶尖准确率的卷积神经网络。文中提到的论文可点击「阅读原文」进行下载...