四、构建Inception-ResNet-v2网络 1.自己搭建 下面是本文的重点 InceptionResNetV2 网络模型的构建,可以试着按照上面的图自己构建一下 InceptionResNetV2,这部分我主要是参考官网的构建过程,将其单独拎了出来。 from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from ten...
ResNet 的结构既可以加速训练,还可以提升性能(防止梯度弥散);Inception模块可以在同一层上获得稀疏或非稀疏的特征,作者尝试将两者结合起来。(inception-resnet有v1和v2两个版本,v2表现更好且更复杂,这里只介绍了v2)。 1、在Inception v3的基础上发明了Inception v4,v4比v3更加复杂,复杂到不可思议 2、结合ResNet与...
而在inception-resnet-v2与inception v4的对比中,inception-resnet-v2的训练速度更块,而且结果比inception v4也更好一点。所以最后胜出的就是inception-resnet-v2。
ResNet 是神经网络领域我个人最喜欢的进展之一。 很多深度学习论文都是通过对数学、优化和训练过程进行调整而取得一点点微小的进步,而没有思考模型的底层任务。ResNet 则从根本上改变了我们对神经网络及其学习方式的理解。 Inception 如果ResNet 是为了更深,那么 Inception 家族就是为了更宽。Inception 的作者对训练更...
在第二幅Inception-ResNet-v2图中最上部分,你能看到整个网络扩展了。注意该网络被认为比先前的Inception V3还要深一些。在图中主要部分重复的残差区块已经被压缩了,所以整个网络看起来更加直观。另外注意到图中inception区块被简化了,比先前的Inception V3种要包含更少的并行塔 (parallel towers)。
2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,...
图3 Inception-resnet-v2的结构图 作者们在训练的过程中发现,如果通道数超过1000,那么Inception-resnet等网络都会开始变得不稳定,并且过早的就“死掉了”,即在迭代几万次之后,平均池化的前面一层就会生成很多的0值。作者们通过调低学习率,增加BN都没有任何改善。
Inception-ResNet-v2 架构比之前的前沿模型更加准确。下表报告了在基于单类图像的 ILSVRC 2012 图像分类基准上的 Top-1 和 Top-5 的准确度检验结果。此外,该新模型相比于 Inception V3 大约只需要两倍的存储和计算能力。结果援引于 ResNet 论文 举个例子,Inception V3 和 Inception-ResNet-v2 模型在识别犬种...
总之就是”丹方”特别复杂,具体去结合Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,了解过resnet和googlenet的网络结构的小伙伴应该很容易弄明白,以下TFLearn的代码参考tf.slim下inception-resnet-v2。 基本的代码结构:...
Inception-ResNet-v2是Google团队Szegedy等[29]基于Inception v4网络结合ResNet的优点提出的一种高性能图像分类网络,其在ILSVRC图像分类基准测试中取得了当下最好的成绩。Inception-resNet-v2网络的主干结构如图7所示,主要由stem、Inception-ResNet-A、Inception-ResNet-B、Inception-ResNet-C、Reduction-A和Reduction-B...