作者基于off-policy的方式,使用CQL(Q-learning的一个变种,用于缓解Q-Learning对于Q值估计过高的问题),...
用于in-context learning的小型测试平台(GINC数据集):为了支持该理论,我们构建了一个预训练数据集和具有潜在概念结构的in-context learning测试平台,取名为GINC。我们发现在GINC上进行预训练会使Transformer和LSTM出现in-context learning,这表明来自预训练数据中的结构有非常重要的作用。消融实验显示,潜在的概念结构(导致...
定义好MDP的各个关键部分后,作者基于off-policy的方式,使用CQL(Q-learning的一个变种,用于缓解Q-Learning对于Q值估计过高的问题),构造一个三层MLP层的Q网络,用于学习最优策略。 《Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator》 前面提及的方法,都是从...
旨在为大型语言模型(LLMs)的指令调整训练提供更高效的训练数据。研究的核心是利用学习百分比(Learning P...
大语言模型(LLM)比如GPT的一个很重要的能力是它的In-Context Learning能力,所谓In-Context Learning是指我们只需要给定一个任务的一些具体例子(包含输入和输出)作为context,模型就能够对新例子(输入)执行这个任务(输出),下图是GPT-3论文中的In-Context Learning方法,这里的任务是机器翻译(将英语翻译成法语),这里的输...
In-Context Learning(ICL)在大型预训练语言模型上取得了巨大的成功,但其工作机制仍然是一个悬而未决的问题。本文中,来自北大、清华、微软的研究者将 ICL 理解为一种隐式微调,并提供了经验性证据来证明 ICL 和显式微调在多个层面上表现相似。继 BERT 之后,研究者们注意到了大规模预训练模型的潜力,不同的预...
定义好MDP的各个关键部分后,作者基于off-policy的方式,使用CQL(Q-learning的一个变种,用于缓解Q-Learning对于Q值估计过高的问题),构造一个三层MLP层的Q网络,用于学习最优策略。 《Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator》 ...
GPT获得巨大成功的重要原因之一,就是其利用的in-context learning能力。利用海量的数据训练GPT这种大型语言模型,对于下游的NLP任务,使用一些示例(demonstration)和提示(prompt),就可以让其为我们产生正确答案。这和传统的pretrain-finetune模式有着巨大差异,in-context learning实现了不需要为每个下游任务finetune一个模型,...
近年来,从“Pretrain & Fine-tune-> Prompt learning-> P-tuning -> Instruction tuning -> Demonstration learning ->Chain-of-thought-> ICL”等概念得提出让人眼花撩乱,其实他们之间存在着包含关系,且这些技术也是随着模型的框架演变趋势(判别->生成)及模型参数量的增大而演变 [3]。
In-Context Learning(ICL)在大型预训练语言模型上取得了巨大的成功,但其工作机制仍然是一个悬而未决的问题。本文中,来自北大、清华、微软的研究者将 ICL 理解为一种隐式微调,并提供了经验性证据来证明 ICL 和显式微调在多个层面上表现相似。 继BERT 之后,研究者们注意到了大规模预训练模型的潜力,不同的预训练任...