因此,in-context learning 中,演示中的分布内输入极大地有助于提高性能。这可能是因为已 IND(in-distribution)文本的条件使任务更接近于语言建模,因为 LM 在此期间总是以 IND 文本为条件进行推理标签。 标签空间实验: 下图中,青绿色的柱子为用随机英语词汇替代展示样本中的标签。可以看到,模型表现明显下降。因此,in...
两篇对in-context learning生成文本进行概率校准的论文。这一类文章值得多翻翻,加深对这一现象的认知。 首先,为什么要校准上下文学习的输出概率呢? 我的看法:在监督学习中,无须考虑这一点。输出概率和标签的对应关系已经在监督样本中得到了校准。但是在incontext learning中,lm更多是对demo的分布进行推测。很多时候可以...
本文从多个角度探究了演示是如何让 In-context learning 在不同的任务中产生性能增益的,而且随着 fine-tune 阶段的黑盒化,很多文章也提出 fine-tune 阶段可能让模型丧失了泛化性,那么 ICL 这种不 fine tune 的方法既节省时间与资源开销,且能提升效果,应该会在大模型林立的时代被人关注,并迅速火起来。 更多阅读 ...
因此,in-context learning 中,演示中的分布内输入极大地有助于提高性能。这可能是因为已 IND(in-distribution)文本的条件使任务更接近于语言建模,因为 LM 在此期间总是以 IND 文本为条件进行推理标签。 标签空间实验: 下图中,青绿色的柱子为用随机英语词汇替代展...
The paper "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?" explores the reasons behind ICL's effectiveness in zero-shot conditions, particularly when combined with large language models (LMs). Despite significant gains in performance on various tasks, there ...
context learning as an effective alternative to conventional in-weight learning methods, particularly for addressing imbalanced regression. In-context learning refers to the ability of a model to condition itself, given a prompt sequence composed of in-context samples (input-label pairs) alongside a ...
we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration exa...
This is a paper list (working in progress) about In-context learningKeywords Conventionabbreviationsection in our surveymain featureconferencePapersSurveyA Survey for In-context Learning. Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, ...
折剑碑下创建的收藏夹发散学习内容:A Survey on In-Context Learning 论文解读,如果您对当前收藏夹内容感兴趣点击“收藏”可转入个人收藏夹方便浏览
Awesome resources for in-context learning and prompt engineering: Mastery of the LLMs such as ChatGPT, GPT-3, and FlanT5, with up-to-date and cutting-edge updates. - EgoAlpha/prompt-in-context-learning