研究人员发现,预训练好的 GPT-3 模型拥有一项神奇的能力,后来被称为:上下文学习(In-Context Learning)。 这项能力简单来说就是,预训练好的 GPT-3 模型在迁移到新任务上的时候并不需要重新训练,而只需要提供任务描述(这个任务描述是可选项)接着提供几个示例(任务查询和对应答案,以一对对的形式组织),最后加上...
In-context learning 到底学到的是什么,又是怎么学到的。应用受限。context size 的上限为 2048 个字符。由于 content limit,一些任务更适合用 fine-turning 来做。这也导致一些研究结论其实并未在文本生成类的任务上进行验证。few-shot setting 下的性能饱和问题,即随着 training examples 的数量的增加 (一般是 ...
In-Context Learning(ICL)在大型预训练语言模型上取得了巨大的成功,但其工作机制仍然是一个悬而未决的问题。本文中,来自北大、清华、微软的研究者将 ICL 理解为一种隐式微调,并提供了经验性证据来证明 ICL 和显式微调在多个层面上表现相似。继 BERT 之后,研究者们注意到了大规模预训练模型的潜力,不同的预...
下图是 in-context learning (左边一列)和一般 fine-tuning (右边一列)的区别,in-context learning 不产生梯度、不会更新模型参数,而 fine-tuning 会产生梯度、更新模型参数。 需要注意区分 in-context learning 中可以有 Zero-Shot、One-Shot 和 Few-Shot 的 Setting,但和 Zero-Shot learning、One-Shot learnin...
Few-shot learning,区别于小样本学习概念,无需更新参数,允许输入数条示例和一则任务说明。 2.ICL 两个阶段的优化方法 ICL 分精调和推断两个优化方法阶段:其中精调阶段,目前优化的方法基本都是基于 pretrained LLM,然后选择性的预热模型来增强和泛化 ICL 的能力;推理阶段优化方法主要分为Prompt 设计和打分函数(Scori...
In-context Learning的工作原理 提示词和示例 提示词:ICL常通过提示词来引导模型的生成过程,提示词通常包括任务描述,问题陈述或请求模型执行的操作。 示例:在少样本学习(Few-Shot Learning)中,提示词可能包括一些示例输入和输出,帮助模型理解如何处理类似的任务。
本文作者发现,in-context learning学习的并不是输入与标注之间的关联,而是通过展示数据形式,来激活预训练模型的能力。此外还有两个附带的结论:(1)在meta learning的环境下,in-context learning的这一特点更为明显;(2)因为标签不重要,所以可以用无标注领域内...
ICL,即In-Context Learning,是一种让大型语言模型(LLMs)通过少量标注样本在特定任务上进行学习的方法。这种方法的核心思想是,通过设计任务相关的指令形成提示模板,利用少量标注样本作为提示,引导模型在新的测试数据上生成预测结果。 ICL主要思路是:给出少量的标注样本,设计任务相关的指令形成提示模板,用于指导待测试样本...
In-context tuning比原始的in-context learning效果好,说明直接对in-context learning obective进行训练是有效的; MAML的效果超越了instruction-tuning,说明MAML是可以充分利用few-shot example来实现task adaptation;而本文提出的方法超越了MAML,则说明in-context tuning可以充分利用预训练语言模型的归纳偏置(inductive bias...
在 In-Context Learning 里,给语言模型一个 “提示(prompt)”,该提示是一个由输入输出对组成的列表,这些输入输出对用来描述一个任务。在提示的末尾,有一个测试输入,并让语言模型仅通过以提示为条件来预测下一个标记。为了正确回答以下两个提示,模型需要理解 In-Context Learning 的演示示例,以确定输入分布(财经或...