import cv2 import numpy as np from imgaug import augmenters as iaa import imgaug as ia # 定义一个lambda表达式,以p=0.5的概率去执行sometimes传递的图像增强 sometimes = lambda aug: iaa.Sometimes(0.5, aug) # 建立一个名为seq的实例,定义增强方法,用于增强 aug = iaa.Sequential( [ iaa.Fliplr(0.5)...
使用左右侧的蓝框矩形角点, 计算左右两张图之间的仿射矩阵M M = cv.getPerspectiveTransform(point1, point2) # points1是左侧的4个矩形角点,points2是右侧的4个矩形角点 2. 因为五角星针对蓝矩形框的相对位置是不变的[在任意图形中, 即使蓝框会在整图中轻微旋转偏移]. 所以求出左右两个蓝框角点间的M仿射矩阵...
cv2_letterbox_image、增强mixup、旋转仿射(使用getRotationMatrix2D和cv2.warpAffine)和椭圆变圆(使用cv2.fitEllipse)等技术用于图像预处理,有助于提升模型训练效率和准确性。边缘提取技术如cv2.ximgproc.createEdgeDrawing()可快速检测图像中的所有边缘、线和椭圆,适用于图像分析和特征提取。目标跟踪技术...
lvgl-bot removed the stale label Aug 21, 2023 lvgl-bot commented Sep 4, 2023 We need some feedback on this issue. Now we mark this as "stale" because there was no activity here for 14 days. Remove the "stale" label or comment else this will be closed in 7 days. lvgl-bot adde...
("float32") / 255.0 # convert the labels from integers to vectors lb = LabelBinarizer() trainY = lb.fit_transform(trainY) testY = lb.transform(testY) # construct the image generator for data augmentation aug = ImageDataGenerator(rotation_range=18, zoom_range=0.15, width_shift_range=0.2...
olojuwin commentedon Aug 24, 2020 olojuwin Just had this issue and resolved it by the explicitimg = np.array(img)right before the operation that fails. It somehow helps even thoughtype(image_db)returns<class 'numpy.ndarray'>both before and after this line. ...
img = hsv_aug(img) if random.random() <= self.jitter_prob: img = jitter(img) if random.random() <= self.noise_prob: img = add_gasuss_noise(img) if random.random() <= self.reverse_prob: img = 255 - img data['image'] = img ...
hsv_aug_prob=0.4, **kwargs): self.tia_prob = tia_prob self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob, jitter_prob, blur_prob, hsv_aug_prob) def __call__(self, data): img = data['image'] h, w, _ = img.shape #...
$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sat_Aug_25_21:08:01_CDT_2018 Cuda compilation tools, release 10.0, V10.0.130 如果您的输出显示 CUDA 已经构建,那么您现在就可以安装cud nn——CUDA 兼容的深度神经网络库。 请从以下链接下载...
answered Aug 16, 2022 at 15:19 TomasTomas 43388 silver badges1919 bronze badges Add a comment | Your Answer Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more Thanks for contributing an answer to Stack Overflow! Please be ...